A Magnetometer for the neutron electric dipole moment experiment

Chris Hovde Southwest Sciences Dmitry Budker UC Berkeley Brian Patton UC Berkeley Eric Corsini UC Berkeley

Southwest Sciences conducts R&D in applied spectroscopy

Custom Instruments

Does the $Cos(\theta)$ magnetic coil produce a sufficiently uniform field in target region?

R. E. Mischke, (2001)

Magnetometer needs to be small, sensitive, and accurate

- Size about 1" or less to measure homogeneity of target region with electric field plates in place
- 1 pT sensitivity to 1 uT magnetic field
- Highly reproducible and stable

The electron spins in an atomic vapor can be used as a magnetometer.

Highest vapor pressure Longest wavelength

Alkali metals have one unpaired electron, which precesses in a magnetic field a the Larmor frequency

Atomic magnetometers (try to) measure the total magnetic field

Magnetic field vector

Atomic magnetometers measure length of vector: $(B_x^2 + B_y^2 + B_z^2)^{\frac{1}{2}}$ by measuring Larmor precession frequency.

Other probes (fluxgate, SQUID, Hall) measure vector components B_x , B_y , B_z

How NMOR works: a modulated laser beam shines on the atoms...

Cs atoms in a specially coated glass bulb

...aligning the atomic spins

The magnetic field rotates the direction of the spins

New cell coating results in very long coherence lifetime

Polarized alkali vapor with minute-long transverse spin-relaxation time

When the modulation frequency matches the Larmor magnetic precession frequency, a strong probe beam signal is observed

Sources of systematic error

- Stray fields from probe
- Nonlinear Zeeman effect
- Changes in resonance width
- Alignment to orientation conversion
- AC Stark effect
- Imperfect polarization

Alignment magnetometer has higher symmetry, leading to smaller heading errors

Heading error at Earth field, where it is much bigger

Orientation spectrum

Alignment spectrum

Phase II Tasks

- Build up the optics and electronics
- Build up field probes
- Test probes against each other
- Examine systematic errors in the lab

Build up optics and electronics

Detailed view of the magnetic probe. Prisms are 10 mm

Summary of progress

- Fiber delivery to multiple measurement channels
- Building up magnetic probe
 - Low noise observed out of fiber
 - Low noise observed coupled into mm fibers
 - Need to put both halves together
- Studying other error sources
 - NLZ and heading well understood
 - Alignment to orientation making progress
 - AC Stark effect needs to be be done
- New cell coating needs further testing