Development of Superconducting RF Multi-Spoke Cavities for Electron Linacs

DOE-NP Phase II SBIR

Terry Grimm

October 2011

Niowave, Inc.

•Privately Owned

- •45,000 square feet
 - Engineering & design
 - Machine shop
 - Fabrication & welding
 - Chemistry facility
 - Class 100 Cleanroom
 - Cryogenic test lab
 - Accelerator test facility

Lansing, Michigan Headquarters

Niowave Leadership

Dr. Terry Grimm President & Senior Scientist

- PhD from Massachusetts Institute of Technology
- 20 Years experience in Department of Energy
 - Superconducting Super-Collider
 - National Superconducting Cyclotron Laboratory at MSU
 - Numerous contracts with DOE at Niowave

Jerry Hollister Chief Operating Officer

- Bachelors in Engineering from University of Michigan
- Active duty Naval Officer for 6 years
- Warranted Contracting Officer for US Navy
- Current Trustee at Lansing Community College

Mark Sinila Chief Financial Officer

- Bachelors in Business Administration from Albion College Honors Program
- 20 years experience in business administration
- Prior CFO for multi-state manufacturer

Primary Customers and Uses of

Superconducting Particle Accelerators

- Large accelerators
 - Current DOE projects: Brookhaven, Fermi, Jefferson Lab, Large Hadron Collider
 - Future: FRIB, eRHIC, Project-X, ILC & many more
- X-ray sources
 - Defense, Medical and Industrial
- Free electron lasers
 - Defense, Medical and Industrial
- Radioisotope production
 - Medical and Industrial

Niowave Products for Superconducting Particle Accelerators **NIOWAVE**

• Electron Guns & Injectors

• Niobium (In Stock)

Cryomodules & Turn-key Accelerators

• Niobium Superconducting Cavities 5

Superconducting Cavities

Niowave produces superconducting cavities at a broad range of frequencies and geometries, and will customize to meet specific applications.

- Elliptical cavities
- Quarter-wave cavities
- Deflecting structures
- Single and Multi-spoke cavities

Single spoke cavity

Cavity frequencies 28 MHz to 9.5 GHz

1.3 GHz 9-cell cavities for ILC

80.5 MHz Quarter-Wave resonator

Superconducting Metals

- Niobium Supplier
 - Large and fine grain niobium in a variety of RRR values.
 - Sheets from 1mm to 35mm
 - Ingots and rods
 - Niobium-Titanium also in stock

- Residual Resistivity Ratio (RRR) measurements
 - Only company in the world that offers service
 - Qualified materials for: Cabot, HC Starck, ATI Wah Chang, Heraeus, Plansee and CBMM (Brazil)

Turn-key Systems

- Superconducting Linac
- Helium Cryoplant
- Microwave Power
- Target / User Facility
- Licensing

Electron Beam Energy	0.5 – 50 MeV
Electron Beam Power	1 W – 1 MW
Electron Bunch Length	~50 ps

• NPS-Niowave 500 MHz SRF Injector

- First superconducting linac designed, fabricated and tested entirely within industry
- First delivery of an SRF beam source to a US Navy facility
- First cool-down and characterization of an SRF beam source at a US Navy facility

Published Results: Harris, et al, "Design and operation of a superconducting quarterwave electron gun," Phys Rev STAB 14 (2011)

Helium Cryogenics

Niowave offers several options, depending on the required cooling load and planned operating schedule.

- Batch filling
 - Use liquid helium Dewars
 - Standard sizes: 100, 250 and 500L
- 5W Cryocooler at 4.4K
 - Smaller systems or low duty cycle
 - Integrated into linac
- 100W Refrigerator/Cryoplant at 4.4K
 - Larger systems or high duty cycle / CW operations
 - 24 hrs / 7 day operations

Batch filling with a 250L helium Dewar

100 W Cryoplant 10

Niowave offers a broad range of options, depending on the frequency, power and electrical efficiency requirements.

- Solid State Amplifiers
 - Low power : $\sim 1 \text{ kW}$
 - High reliability
- Tetrodes
 - Intermediate power: ~10 kW
- Inductive Output Tubes (IOTs)
 - Medium power: ~100 kW
- Klystrons
 - High power: ~1000 kW (1 MW)

10 kW Tetrode

90 kW IOT 11

This project is done in collaboration with:

Prof. Jean Delayen - Old Dominion University (ODU) and Thomas Jefferson National Laboratory (JLAB)

The funding is provided by the DOE SBIR program Contract # DE-FG02-08ER85172.

Concept of the Multi-Spoke Cavity NIOWAVE

- The electric field between the spokes and between the spoke and the end-plate is used for acceleration of the beam.
- Particles are synchronized with the alternating RF wave so that they see acceleration in each of the three gaps.
- Single- and multi-spoke cavities have been successfully used with heavy ions, but this project will be the first multi-spoke cavity to accelerate electron beams.

- Why 500 MHz
 - Reduced cryogenic losses at lower frequency
 - Commercial 4.2 K cryoplant
 - Compact structure that is more resistant to vibrations (microphonics) compared to the traditional elliptical ILC-type cavities
 - Commercial, CW microwave sources available
 - 90 kW IOTs
 - 1 MW klystrons

- The multi-spoke cavity is significantly more compact than an elliptical cavity at the same frequency.
- The operating frequency can then be reduced without sacrificing "real estate gradient" and benefit from the 4.2 K operating temp.

Alternative EM Designs

"Basic" EM Design

- Simpler for fabrication, better suited for prototype
- Lacks the performance of the "advanced" option

"Advanced" EM Design

- More complicated for fabrication
- Higher accelerating fields
 lead to savings for the midto-large scale project where
 R&D costs are spread out over many cavities

Prototype "Basic" EM Design NOV

×

+ Simpler for fabrication
+ Better suited for prototype
- Lacks the performance of the "advanced" option

"Advanced" EM Design

NIOWAVE www.niowaveinc.com

- More complicated for fabrication
- Better suited for mass
 production of units for the mid-to-big scale project

EM parameters – basic and advanced designs

Advanced

• disadvantages of advanced design

- cavity size larger (by ~20-25% in both radius and length)
- more complicated spokes and cavity end-plates geometry
- higher total amount of losses for the same B_{peak}
- advantages of advanced design
 - Accelerating voltage increased by more then 55%
 - R/Q is increased by $\sim 31\%$
 - Geometric factor is increased by ~38%

	-	_
Frequency (MHz)	500	500
Vo (MV)	4.07	6.32
Ea (MV/m)	7.36	11.6
Eo (MV/m)	16.89	18.73
Epeak (MV/m)	21.69	29.47
Bpeak (mT)	80.0	80.0
Bp/Ep (mT/(MV/m))	3.69	2.71
Rres (nOhm)	5.0	5.0
R _{BCS} (nOhm)	79.0	79.0
Pd (W)	29.64	39.13
T (K)	4.2	4.2
Q	1.27E+09	1.77E+09
G (Ohm)	106.9	147.8
R/Q (Ohm)	438.9	576.6
TTF	0.83	0.76

Basic

Mechanical Cavity and Cryomodule Design

• The production drawings detailing the manufactured parts and assembly process are produced

- Vacuum vessel
- Mu-shield
- LN2 copper shield
- LHe cryovessel
- Nb cavity

Mylar superinsulation in the cryomodule vacuum

Fabrication

OP 2 POSITION

Deep drawing of copper prototype of the niobium 4 mm thick end-plate for confirmation of the fixture feasibility

Fabrication [2]

mu-metal magnetic shield and the liquid He cryovessel

vacuum vessel ready for assembly

Cavity Assembly and Welding NIOWAVE

• The niobium cavity parts were assembled together in the clean room, class 100, and electron-beam welded

 \bigotimes

 Preliminary RF measurements of the welded niobium cavity were performed before assembly of the whole cryomodule

Cryomodule Assembly

1 O 11

iowaveinc.co

• The cavity and RF power coupler installation was done in the clean room

 The cryomodule assembly was done in stages

Cavity RF Measurements

- Cavity RF measurements were done after full cryomodule assembly at Room Temperature
- Due to weak coupling being designed for cryogenic temperatures, the modes were measured with the coupler modes on the background

Measurement of RF Properties of the Multi-Spoke Cavity

- The bench-top measurements of the cavity spectrum and the beadpull measurements of the on-axis electric field were done
- The HOMs measurement in the whole cryomodule assembly were done in final preparations for the cryogenic tests

- The DOE SBIR Phase-II project has been finished and the final report delivered
- The niobium cavity and the full cryomodule were fabricated and assembled
- RF measurements at room temperature confirmed the design parameters
- First beam test is possible at Niowave in 2011
 subject to additional funding (Phase III)

- MIT's CUBIX Compton X-ray project uses the proposed concept for their accelerator
- Office of Naval Research (ONR)
 - fund the cryogenic test of the 500 MHz electron spoke (Naval Postgraduate School, ODU)
 - Advanced designs for high power lasers (ONR, NPS, ODU, LANL, Boeing)