Development of a Tunable 28 MHz Superconducting RF Cavity for RHIC

DOE-NP Phase II SBIR

Terry Grimm

October 2011

Niowave, Inc.

•Privately Owned

- •45,000 square feet
 - Engineering & design
 - Machine shop
 - Fabrication & welding
 - Chemistry facility
 - Class 100 Cleanroom
 - Cryogenic test lab
 - Accelerator test facility

Lansing, Michigan Headquarters

Niowave Leadership

Dr. Terry Grimm President & Senior Scientist

- PhD from Massachusetts Institute of Technology
- 20 Years experience in Department of Energy
 - Superconducting Super-Collider
 - National Superconducting Cyclotron Laboratory at MSU
 - Numerous contracts with DOE at Niowave

Jerry Hollister Chief Operating Officer

- Bachelors in Engineering from University of Michigan
- Active duty Naval Officer for 6 years
- Warranted Contracting Officer for US Navy
- Current Trustee at Lansing Community College

Mark Sinila Chief Financial Officer

- Bachelors in Business Administration from Albion College Honors Program
- 20 years experience in business administration
- Prior CFO for multi-state manufacturer

Primary Customers and Uses of

- Large accelerators
 - Current DOE projects: Brookhaven, Fermi, Jefferson Lab, Large Hadron Collider
 - Future: FRIB, eRHIC, Project-X, ILC & many more
- X-ray sources
 - Defense, Medical and Industrial
- Free electron lasers
 - Defense, Medical and Industrial
- Radioisotope production
 - Medical and Industrial

Niowave Products for Superconducting Particle Accelerators **NIOWAVE**

• Electron Guns & Injectors

• Niobium (In Stock)

Cryomodules & Turn-key Accelerators

• Niobium Superconducting Cavities 5

Superconducting Cavities

Niowave produces superconducting cavities at a broad range of frequencies and geometries, and will customize to meet specific applications.

- Elliptical cavities
- Quarter-wave cavities
- Deflecting structures
- Single and Multi-spoke cavities

Single spoke cavity

Cavity frequencies 28 MHz to 9.5 GHz

1.3 GHz 9-cell cavities for ILC

80.5 MHz Quarter-Wave resonator

Superconducting Metals

- Niobium Supplier
 - Large and fine grain niobium in a variety of RRR values.
 - Sheets from 1mm to 35mm
 - Ingots and rods
 - Niobium-Titanium also in stock

- Residual Resistivity Ratio (RRR) measurements
 - Only company in the world that offers service
 - Qualified materials for: Cabot, HC Starck, ATI Wah Chang, Heraeus, Plansee and CBMM (Brazil)

Turn-key Systems

- Superconducting Linac
- Helium Cryoplant
- Microwave Power
- Target / User Facility
- Licensing

Electron Beam Energy	0.5 – 50 MeV
Electron Beam Power	1 W – 1 MW
Electron Bunch Length	~50 ps

- NPS-Niowave 500 MHz SRF Injector
 - First superconducting linac designed, fabricated and tested entirely within industry
 - First delivery of an SRF beam source to a US Navy facility
 - First cool-down and characterization of an SRF beam source at a US Navy facility

Published Results: Harris, et al, "Design and operation of a superconducting quarterwave electron gun," Phys Rev STAB 14 (2011)

Helium Cryogenics

Niowave offers several options, depending on the required cooling load and planned operating schedule.

- Batch filling
 - Use liquid helium Dewars
 - Standard sizes: 100, 250 and 500L
- 5W Cryocooler at 4.4K
 - Smaller systems or low duty cycle
 - Integrated into linac
- 100W Refrigerator/Cryoplant at 4.4K
 - Larger systems or high duty cycle / CW operations
 - 24 hrs / 7 day operations

Batch filling with a 250L helium Dewar

100 W Cryoplant

Niowave offers a broad range of options, depending on the frequency, power and electrical efficiency requirements.

- Solid State Amplifiers
 - Low power : $\sim 1 \text{ kW}$
 - High reliability
- Tetrodes
 - Intermediate power: $\sim 10 \text{ kW}$
- Inductive Output Tubes (IOTs)
 - Medium power: ~100 kW
- Klystrons
 - High power: $\sim 1000 \text{ kW} (1 \text{ MW})$

10 kW Tetrode

NIOWAVE www.niowaveinc.com

This project is done in collaboration with

Dr. Ilan Ben-Zvi Dr. Sergey Belomestnykh (Brookhaven National Laboratory)

The funding is provided by the DOE SBIR program Contract # DE-SC0001215.

The Relativistic Heavy Ion Collider [1] **NIOWAVE**

X

The Relativistic Heavy Ion Collider (RHIC) studies matter at extreme temperature and pressure by colliding all sorts of nuclei including high-atomic-number species like gold.

This project involves the design and construction of a superconducting cavity to replace the accelerating RF cavities in the RHIC ring.

The superconducting structure designed in this SBIR is unique research and represents a significant contribution to RHIC.

• "folded" quarterwave resonator geometry has not been previously built

- tuning range (~1 % of the operating frequency) is unprecedented for a superconducting cavity
- at 28.1 MHz, this will be the lowest frequency superconducting cavity in operation

The folded quarter-wave geometry allows very low frequency operation at reduced cavity length.

Addition of a second capacitor – only a small section must be moved to tune the cavity the required 200 kHz. This moving part can be part of a separate section

attached by a flange to the rest of the cavity.

mechanical joint

peak electric field

peak magnetic field

cavity frequency	28.1 MHz
tuning range	200 kHz
tuning slew rate	22 kHz/s
design voltage	650 kV
peak surface electric field	26 MV/m
peak surface magnetic field	44 mT
magnetic field at mechanical joint	2 mT
cavity Q	$1.6 imes 10^{9}$
effective shunt impedance (R/Q)	66 Ω
dissipated power	4.1 W

A niobium cap has been made to replace the tuning section for the initial cooldown to test the mechanical joint.

> Niobium-niobium mechanical joint should support the required current while superconducting.

The large subassemblies are now ready to be joined (by electron beam welding) to create the main cavity.

Fabrication [2]

preparation of niobium assemblies in the Niowave clean room

> test fitting of all subassemblies prior to electron beam welding

- Electron beam welding should be complete by end of 2011
 - RF measurements (f, Q at room temperature)
 - Leak checked
- Phase II complete
 - Ship to BNL for processing and cryogenic testing

- Continue collaboration with BNL
 - Power coupler and pickup designed and installed
 - Process (acid etch, high pressure rinse) and cryogenic test
 - Build prototype tuner and test with cavity
 - Design cryomodule with integrated power coupler, tuner, HOM couplers, and helium vessel