Enhanced Quantum Efficiency of Photocathodes with Polarized Emission

<u>Aaron Moy</u>, Yiqiao Chen, Wentao Lu, Peter Chow SVT Associates, Eden Prairie, Minnesota

> in collaboration with Matt Poelker, Jefferson Lab (JLab):

Acknowledgements: US Dept. of Energy SBIR contract #DE-SC0006197 (Phase I and II)

Outline

- Company introduction
- Photocathodes
- Molecular Beam Epitaxy
- GaAsP/GaAs Superlattice Photocathode
- <u>Our approach</u>: extending operational characteristics of photocathodes by adding integrated mirrors
- Conclusion

SVT Associates, Inc. Company Overview

- Located in Eden Prairie, MN (Minneapolis Metro Area)
- Founded in 1993 as MBE equipment provider
- 35 employees
- Currently supplies vacuum processing modules for MBE and other thin films deposition (e.g. CIGS)
- SVTA's applications laboratory conducts R&D into materials, supplies epi-wafers and devices, test and develops hardware
- One of today's leading suppliers with > 120 systems in the field

SVTA Product Line

(www.svta.com)

Process Knowledge

MBE Systems and Components

ALD, PLD UHV Deposition

In-situ Process Monitoring & Control

Applications Lab MBE Growth & Devices Fab.

Semiconductors Research at SVT

- US Government and Industrial research grants
- Established research collaboration with many universities: Illinois, North Carolina State, Florida, Stanford ...
- Highly technically oriented, PhD scientists & engineers
- > 100 book chapters, publications and presentations
- Significant Antimonide, Nitride and ZnO accomplishments
 - High power HEMT & MOSHEMT
 - Commercialized solar blind UV detector products
 - High efficiency photocathode
 - Innovative LED utilizing Quantum Structures
 - New mid Infrared Laser and LWIR Photodiode
 - Rainbow colored MgZnCdO

Photocathodes

- Photocathodes for conversion of light into electron current
 - Electrons and holes created by photon absorption
 - Electrons ejected due to applied high voltage
 - Electron current captured or reabsorbed by phosphor
- Application: Night vision / image intensifiers, highly sensitive photodetectors
- Application: Spin polarized emitter
 - Emission heavily favoring an "up" or "down" spin of electrons
 - Useful in some high energy physics experiments, spin polarized

electron microscopy Solutions through Epitaxy Engineering

Basic Photocathode Operation (transmissive mode)

Spin Polarized Emission (reflective mode)

Polarized Emitters

- Photocathode emission
 Circularly polarized light
- Unstrained GaAs
 - 50% max polarization
- Compressively strained GaAs
 - lattice constant < 5.65 Å
 - valence band splitting
 - 3/2→1/2 transition favored
 - 100% max polarization

Creating Strained GaAs Layers

- Heteroepitaxy
- New layers will form based on previous lattice
- Compressive strain
 Growth on lattice with smaller

lattice constant

Larger difference in lattice size

increased strain force

GaAs 5.65 Å

GaAs_{0.64}P_{0.36} 5.58 Å

Compressively strained GaAs on GaAs_{0.64}P_{0.36} lattice constant 5.58 Å

Limits to Strained Layers: Critical Thickness

- Strain forces increase with thickness
- Strain reaches threshold, lattice relaxes
- "Critical Thickness"
 - Layer thickness where relaxation occurs
 - Relaxed lattice- bulk crystal state
 - Thickness inversely proportional to strain (difference in lattice constant)
- Misfit dislocations created
 - Scattering, absorption of photons
 - Non-uniformities

Photocathode Polarized Emitters

Device Considerations

- Strained GaAs layer
 - Highly p-type doped
 - Thick to provide enough emission current
- Structure Growth
 - Uniform
 - Excellent crystallinity
- Substrate for epitaxy
 - High quality
 - Robust

Strained Superlattice Photocathode

- Strained GaAs on GaAs_xP_{1-x}
- Multiple GaAs layers sandwiched by GaAs_xP_{1-x}
 - Each GaAs layer below critical thickness
 - Multiple GaAs layers to provide thick overall active volume for electron emission
 - Superlattice- repetition of thin layers

MBE for epitaxy

- Thin layers (< 50 Å)
- Utilizes phosphorus
- Abrupt, uniform interfaces

Growth of thin film crystalline material where crystallinity is preserved, "single crystal"

Bare (100) III-V surface, such as GaAs

Deposition of crystal source material (e.g. Ga, As atoms)

Atomic Flux

Result: Newly grown thin film, lattice structure maintained

III-V Compound Semiconductors

Molecular Beam Epitaxy (MBE)

- Growth in high vacuum chamber
 - Ultimate vacuum < 10⁻¹⁰ torr
 - Pressure during growth < 10⁻⁶ torr
- Elemental source material
 - High purity Ga, In, AI, As, P, Sb (99.9999%)
 - Sources individually evaporated in high temperature cells
- In situ monitoring, calibration
 - Probing of surface structure during growth
 - Real time feedback of growth rate

Molecular Beam Epitaxy

MBE- In Situ Surface Analysis

- Reflection High Energy Electron Diffraction (RHEED)
- High energy (5-10 keV) electron beam
- Shallow angle of incidence
- Beam reconstruction on phosphor screen

RHEED image of GaAs (100) surface

MBE System Photo

MBE- Summary

- Ultra high vacuum, high purity layers
- No chemical byproducts created at growth surface
- High lateral uniformity (< 1% deviation)
- Growth rates 0.1-10 micron/hr
- High control of composition and thickness
- Lower growth temperatures than MOCVD
- In situ monitoring and feedback
- Mature production technology

MBE Grown GaAsP SL

• greater than 1% QE

- achieved 86% polarization
 - material specific spin depolarization mechanism

US Dept. of Energy SBIR Phase I and II contract #DE-FG02-01ER83332, collaboration with SLAC

MBE Grown GaAsP SL for Polarized Photocathode Emitters

SVT supplied photocathodes with > 80% polarization
CEBAF/JLab, SLAC, Mainz Microtron and Bonn/ELSA

SVT first company to supply Arsenic capped devices

- As-capping protects surface from atmospheric contamination
- Arsenic removed in vacuum before activation
- Improved success rate of installed photocathodes

Improving Polarized Photocathode Emitters

- Increased polarization?
 - Material quality
 - Alternative material systems

Increased quantum efficiency (output current)?

- QE ratio of incident photons to extracted polarized electrons
- Reduce depolarizing mechanisms (material quality)
- Only a small percentage of laser light is absorbed by superlattice active layer
- Increase laser power -> more waste heat
- Increase QE by maximizing pertinent photon absorption

Improving Polarized Photocathode Emitters

 "One-pass" status quo design (left), less than 10% photon absorption in active area

Add mirror to structure to create multiple reflections of excitation beam

In a standard single-pass photocathode structure over 90% of laser energy is wasted and converts to unwanted heat. In a photocathode with integrated reflector laser energy is redirected to make multiple passes through the superlattice active layer, increasing quantum efficiency and/or reducing parasitic heat.

Combining DBR Mirror with Photocathode

- Distributed Bragg Reflector (DBR)
 - Pairs of layers with differing optical indexes of refraction
 - Layer thickness dependent on desired wavelength for reflection
 - Layer material must be compatible with substrate and active layer
 - Layer material must be transparent to target wavelength

Modeling of DBR Mirror with Photocathode

Refractive index and thickness of materials in another DBR with Fabry-Perot cavity at 760 nm.							
	AlInP	InGaP	InGaP buffer	GaAsP	GaAs/GaAsP SL	GaAs	
n	2.9356	3.3102	3.3102	3.4888	3.6192+0.0226i	3.712+0.095i	
d (nm)	64.72	57.40	145	550	120	5	

- DBR and surface reflection create optical Fabry-Perot cavity
- Photons repeatedly bounce between DBR and surface
- E-field of incident light strongest in active area near ejection surface

Growth and Measurement of DBR Mirror

Calibration of GaAs(x)P(1-x)/GaAs Superlattice

Calibration of GaAs(x)P(1-x)/GaAs Superlattice

Structure of DBR Photocathode

emitter	GaAs	5nm			
superlattice	GaAs/GaAs P SL	3.8/2.9 nm x 14 pair			
buffer	GaAs	2.5 um			
DBR stack	GaAs P /AlGaAsP	1.4 um			
grading layer	GaAsP composition grade				
	GaAs buffer				
	GaAs substrate				

X-Ray of Grown DBR Photocathodes

DBR Photocathodes Status

- Growth of two samples completed
 - One polarized photocathode structure only (control)
 - One polarized photocathode structure with DBR stack
- Awaiting polarization and QE data
- Optically measure DBR reflection of sample, compare with QE data
- Modify structure and produce new samples if needed

Conclusion

- Photocathodes with polarized emission
- Increased polarization and current -> faster collection of data
- GaAsP/GaAs SL structure already proven and in use
- Reflector integrated into photocathode
- Laser light inside Fabry-Perot cavity for increased absorption
- Modeling predicts up to an order of magnitude absorption increase
- Control and experimental samples grown, awaiting polarization and QE measurement.

