Year	Name	Institution	Brief Description
2022	Alexander Austregesilo	Thomas Jefferson	"Advanced Methods for Hybrid Meson
		National Accelerator	Searches"
		Facility	
			The strong nuclear force binds the fundamental
			quarks into composite hadrons, such as protons
			and neutrons, and is effectively responsible for
			99% of the mass of the visible universe. Even
			though it is described by the theory of quantum
			chromodynamics (QCD) within the Standard
			Wodel of particle physics, it bears many
			unsolved mysteries. Confinement and the large
			the deduction of the badron spectrum from
			first principles. Simplified models successfully
			describe the observed ground-state mesons
			and baryons as quark-antiquark or three-quark
			bound states, respectively, but no known
			mechanism in the theory forbids combinations
			of four or five quarks into so-called tetra- and
			pentaquark states. Furthermore, the carriers of
			the strong interaction, the gluons, can
			potentially contribute to the spectrum of
			hadrons. They can manifest themselves in the
			form of pure gluonic bound states, known as
			glueballs, or the excited gluonic field may
			contribute to the quantum numbers of so-
			called hybrid mesons. States with quantum
			numbers that cannot be realized by
			conventional quark-antiquark combinations are
			known as exolic mesons, which serve as
			simple quark models. The existence of
			glueballs multi-quark states and other exotic
			excitations in the hadron spectrum is one of
			the most important predictions of the Standard
			Model that has not yet been confirmed
			experimentally. The primary objective of this
			research is the experimental study of these
			novel forms of nuclear matter within the
			spectrum of hadrons to further the
			understanding of the dynamics of the strong
			interaction. The Gluonic Excitation Experiment
			(GlueX) at the Thomas Jefferson National
			Accelerator Facility (Jefferson Lab) was
			specifically designed to study the light-quark
			meson spectrum and to confirm or refute the

			determine the properties and composition of
			neutron star matter as well as the astronomical
			properties of neutron stars. Some of the key
			questions this research targets are how large is
			the process incide positron store de
			depending dependence on the server and whet
			deconfined quarks exist in their cores; and what
			is the neaviest neutron star that exists in our
			Universe. This project aims to use data to
			robustly address some of the open questions
			with the widest interdisciplinary interest in
			nuclear astrophysics: the internal structure of
			neutron stars, the properties of matter at the
			highest densities, and the astrophysical
			conditions of the production site of heavy
			elements.
2022	Yang-Ting Chien	Georgia State University	"Probing Quark Matter and Hadronization Using
			Energy Flow Substructure"
			A hot and dense medium created in high
			energy nuclear collisions, referred to as the
			Quark-Gluon Plasma (QGP), exhibits novel
			properties of a perfect fluid. Its inner working is
			an open question, which holds the key to a
			better understanding of the strong interaction.
			Since the QGP only lasts about 10–23 second
			with a size of a nucleus, jets produced during
			hard scattering as sprays of energetic and
			collinear particles can be used to probe such
			medium. Modifications of such energy flow
			substructure due to jet-medium interaction
			therefore encode detailed information about
			OGP properties. This project uses modern
			machine learning algorithms to search for OGP
			signatures in jets which will be guided by
			theoretical calculations of jet substructure
			using Quantum Chromodynamics, Nuclear
			structure and hadronization, which is the
			transition from guarks and gluons to final state
			narticles, can also be identified through their
			imprints in operate flow substructure. The
			imprints in energy now substructure. The
			project will contribute to establishing timely
			and firm basis for understanding the data from
			the Relativistic Heavy Ion Collider, the Large
			Hadron Collider, and the future Electron Ion
			Collider.
2022	John D. Despotopulos	Lawrence Livermore	"Measurement of Neutron-Induced Cross
		National Laboratory	Sections of Nuclides Produced at the Facility for

			Rare Isotope Beams (FRIB) using the National Ignition Facility (NIF)"
			Ignition Facility (NIF)" This research leverages unique capabilities at two of the nation's premier research facilities, the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory and the Facility for Rare Isotope Beams (FRIB) at Michigan State University. FRIB is the only accelerator in the world capable of generating many of the nuclear isotopes that are created inside stars, whereas NIF is the world's only facility capable of recreating the conditions inside stars, which it achieves by aiming 192 laser beams onto a tiny capsule to induce nuclear fusion. When nuclear fusion occurs, material added into the target will undergo neutron-induced reactions, and nuclear cross sections can be determined by collecting samples for analysis. This project will harvest radioactive isotopes from FRIB, radiochemically purify those isotopes and add them to the inside of a NIF target capsule in order to study these same isotopes in a neutron-rich environment similar to that in stellar interiors. The measured cross sections will improve our understanding of stellar nucleosynthesis and benefit national security, both key goals of the Office of Nuclear Physics. These measurements will be among the first
			ever made in a true high energy density plasma and for radioactive species with short half-lives.
2022	Anders Knospe	Lehigh University	"Heavy Flavor at RHIC" In the first few microseconds after the Big Bang, the universe consisted of a hot and dense state of matter called the quark-gluon plasma (QGP). This state of matter is essentially a "soup" of quarks and gluons, the subatomic particles which make up protons and neutrons, which in turn are the building blocks of atomic nuclei. Scientists at modern collider facilities accelerate nuclei to very high energies and smash them into each other, which "melts" them into their constituent quarks and gluons and recreates the QGP. The plasma expands and cools during its short lifetime (~10- 23 seconds) before making the transition back to regular matter. Physicists use a wide variety of probes to characterize the properties of the QGP in detail. This work will use heavy quarkonia,

			which are bound charm-anticharm or bottom-
			antibottom mesons, as probes of the quark-gluon
			plasma. The presence of a OGP will inhibit the
			formation of heavy quarkonia in a way that
			denends on both the temperature of the plasme
			depends on both the temperature of the plasma
			and how tightly bound the quarkonium state is.
			Measurements of the abundances of different
			types of quarkonia in heavy-ion collisions,
			compared to a proton-proton collision baseline,
			will allow us to probe the properties of the QGP,
			including its temperature evolution. In this work,
			we will measure the vields of charm-anticharm
			and bottom-antibottom guarkonia in small
			(proton-proton) and large (beavy-ion) collision
			systems to shad light on how the suppression of
			these hound states evolves with system size
			these bound states evolves with system size.
			Furthermore, the quark-gluon plasma has been
			observed to behave as a liquid with a very low
			viscosity. We will conduct measurements of the
			flow parameters of bottom-antibottom quarkonia
			to characterize the extent to which bottom
			guarks participate in the collective motion of the
			system. This work will make use of the excellent
			narticle identification and tracking canabilities of
			the STAP detector and the newly upgraded
			and the star detector and the newly upgraded
			SPHENIX detector, both at the Relativistic Heavy
			Ion Collider at Brookhaven National Laboratory.
			Our use of heavy, rare particles to probe the
			quark-gluon plasma will shed light on the
			behavior of this unique state of matter and help
			us better understand the strong nuclear force,
			one of the fundamental forces of nature.
2022	Christopher Monahan	William & Mary	"The Three Dimensional Structure of the Proton"
2022		William & Wary	
			Protons and neutrons are the basic building
			blocks of almost all visible matter, and account
			for 05% of the mass of the visible universe
			Distance and neutrons are compared of areally in
			Protons and neutrons are composed of smaller
			particles, quarks, bound together by the strong
			nuclear force, which is carried by gluons and is
			responsible for all nuclear matter, from
			hydrogen ions to neutron stars. The exact
			arrangement of quarks and gluons inside
			protons and neutrons is not well known. This
			project helps understand the three-
			dimensional arrangement of quarks and gluons
			within protons and neutrons using large-scale
			supercomputing facilities to estimite the
1			supercomputing facilities to calculate the

			properties of protons and poutrons directly
			from the strong nuclear force. These
			from the strong nuclear force. These
			calculations complement data on proton and
			neutron structure obtained from experiments
			performed at Thomas Jefferson National
			Accelerator Facility and the planned electron-
			ion collider at Brookhaven National Laboratory
			and provide a basis for combining experimental
			and theoretical data in a consistent framework.
2022 G	Guido Pagano	Rice University	"Trapped-Ion Quantum Simulation for Nuclear
			Physics"
			Quantum Field Theories play a central role in our
			understanding of nature providing a framework
			for understanding the interactions between
			elementary particles and for studying the real-
			time dynamics of matter after the Big Bang.
			However, despite significant progress in classical
			computational techniques, there are a number of
			roadblocks that prevent us from simulating these
			theories at large scale and in their real-time
			dynamics using conventional approaches. A
			fundamental challenge is related to the
			computational cost that grows exponentially with
			the number of particles making large-scale
			simulations classically intractable. One promising
			simulations classically intractable. One promising
			approach to overcome these challenges is the use
			of quantum processors for directly simulating
			field theories. Recent advances in quantum-
			computing hardware have allowed access to
			regimes on the verge of surpassing classical
			computers. The overarching goal of this project is
			to use one of the most promising quantum
			platforms, trapped atomic ions, to directly map
			and simulate field theories and nuclear physics
			models. However, these theories are not readily
			mappable in existing quantum platforms.
			Therefore, the focus of this project is to study and
			experimentally realize new analog and hybrid
			analog-digital quantum simulation protocols that
			can directly realize quantum field theories in
			trapped-ion systems. The new experimental tools
			developed in this project will provide a
			foundation for the simulation of quantum matter
1			foundation for the simulation of quantum matter in the Standard Model, approaching a regime
			foundation for the simulation of quantum matter in the Standard Model, approaching a regime that cannot be efficiently accessed with
			foundation for the simulation of quantum matter in the Standard Model, approaching a regime that cannot be efficiently accessed with conventional computing techniques.
2022 Z	haowen Tang	Los Alamos National	foundation for the simulation of quantum matter in the Standard Model, approaching a regime that cannot be efficiently accessed with conventional computing techniques. "Understanding the 10 Seconds Neutron

	The Standard Model of particle physics describes
	the way that all known elementary particles
	behave under three of the four known forces of
	the universe, the electromagnetic, weak, and
	strong interactions. Under this theory, the free
	neutron decays 100% of the time into a proton,
	electron, and antineutrino, with a lifetime of
	about 15 minutes. In combination with other
	experiments, the neutron lifetime can provide
	constraints on many extensions of the Standard
	Model, Also, knowledge of the neutron lifetime at
	the 1 second level is necessary to improve
	predictions of the elements generated from the
	Big Bang. There are primarily two different
	methods to measure the neutron lifetime:
	experiments based on cold neutron beams and
	experiments using ultracold neutron bottles. The
	results of these two methods differ by 9.6
	seconds, which corresponds to a chance of 1 in
	3.5 million that the two results are compatible
	with each other. There are two possible
	explanations for this large discrepancy:
	unaccounted effects in the interpretation of data
	(systematic error) in one or both of the methods,
	or a new mode of decay of the neutron that
	produces thus far unknown and undetected
	particles. This research plans to measure the
	neutron lifetime to the 1 second level using an
	alternative method with completely different
	systematic errors compared to previous
	measurements. A result that agrees with the
	bottle experiments will suggest that there are
	unaccounted systematic errors in the beam
	measurements, and a result that agrees with the
	beam experiments can be interpreted as a
	discovery of a new hidden decay mode of the
	neutron.