DOE/NSF-HEPAP/NSAC Neutrino Scientific Assessment Group "NuSAG"

Report to HEPAP G. Beier, P. Meyers – February 23, 2007

- Goals of the next phases of neutrino oscillations
- The charge to NuSAG
- Off-axis and Wide Band Beam approaches
- Experimental realizations of these approaches
- Outstanding issues
- NuSAG schedule

From the original charge to NuSAG:

...we ask the NuSAG to make recommendations on the specific experiments that should form part of the broad U.S. neutrino science program.

• September 1, 2005: Recommendations to the Department of Energy and the National Science Foundation on a United States Program in Neutrino-less Double Beta Decay

• February 28, 2006: Recommendations to the Department of Energy and the National Science Foundation on a U.S. Program of Reactor- and Accelerator-based Neutrino Oscillation Experiments

Members of NuSAG

Eugene Beier (University of Pennsylvania and Co-Chair) Peter Meyers (Princeton University and Co-Chair) Leslie Camilleri (CERN) Boris Kayser (Fermi National Accelerator Laboratory) Ed Kearns (Boston University) Bill Louis (LANL) Naomi Makins (University of Illinois) Tsuyoshi Nakaya (Kyoto University) Guy Savard (Argonne National Laboratory) Heidi Schellman (Northwestern University) Gregory Sullivan (University of Maryland) Petr Vogel (California Institute of Technology) Bruce Vogelaar (Virginia Tech) Glenn Young (Oak Ridge National Laboratory)

HEP/nuclear, expt/theory, US/not, v physics/not

The paradigm: 3-v mixing

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

With $c_{ij} \equiv \cos \theta_{ij}$ and $s_{ij} \equiv \sin \theta_{ij}$:

$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \times \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \times \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\theta_{23} \approx \theta_{\text{atm}} \approx 45^{\circ}; \ \theta_{12} \approx \theta_{\text{sol}} \approx 34^{\circ}; \ \theta_{13} \leq 10^{\circ}$$

 $\delta \text{ can lead to } P(\nu_{\alpha} \rightarrow \nu_{\beta}) \neq P(\overline{\nu}_{\alpha} \rightarrow \overline{\nu}_{\beta})$

(LSND not consistent with this picture -

here is where you generally ask me about MiniBooNE)

4

The mass hierarchies

Goals of the next phases of the worldwide experimental program in neutrino oscillations

Fill out our understanding of 3-neutrino mixing and oscillations:

- What are the orderings and splittings of the neutrino mass states?
- What are the mixing angles?
- Is there CP violation in neutrino mixing?

A world-wide effort has laid out an ambitious program that can do **all** of this – subject to the values of the unknown parameters, a risk inherent to this **experiment-driven** field.

Accelerator
$$v_{\mu} \rightarrow v_{e}$$
 appearance

$$P[\overset{(\neg)}{v_{\mu}} \rightarrow \overset{(\neg)}{v_{e}}] \cong \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \Delta_{31}$$

$$+ \sin 2\theta_{13} \cos \theta_{13} \sin 2\theta_{23} \sin 2\theta_{12} \quad v$$

$$\sin \Delta_{31} \sin \Delta_{21} \cos(\Delta_{32} \pm \delta)$$

$$+ \sin^{2} 2\theta_{12} \cos^{2} \theta_{23} \cos^{2} \theta_{13} \sin^{2} \Delta_{21} \quad \overset{(\neg)}{v}$$

$$(\Delta_{ij} \equiv 1.27 \Delta m_{ij}^{2} (eV^{2}) L(km) / E(GeV))$$
Sensitivity to mass hierarchy via "matter effects":
Passage through matter:
Normal: increases $v_{\mu} \rightarrow v_{e}$, decreases $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$
Inverted: decreases $v_{\mu} \rightarrow v_{e}$, increases $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$

Note: $\sin 2\theta_{13}$ a factor in all the physics we are after!

Reactor $\overline{\nu}_e$ disappearance

$$P[\overline{\nu_{e}} \rightarrow \operatorname{Not} \overline{\nu_{e}}] \cong \sin^{2} 2\theta_{13} \sin^{2} \Delta_{31} + \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \Delta_{21} \qquad \text{small at max}$$
of first term

Accelerator-based oscillation experiments

- *θ*₁₃>0
- mass ordering if θ_{13} large enough
- CP violation if θ_{13} large enough
- parameter extraction limited by degeneracies combine energies or reactor

Reactor-based oscillation experiments

- measure only θ_{13} but without ambiguity
- combine with accelerator to break degeneracies

in some regions, if sufficient precision

"**Phase 1**": currently approved or planned Reactor experiments

- Double Chooz: $3\sigma \text{ sens } \sin^2 2\theta_{13} \sim 0.05$ by 2012
- Daya Bay: 3σ sens $\sin^2 2\theta_{13} \sim 0.02$ by 2013

Accelerator experiments (with currently planned beam power)

- T2K: $3\sigma \text{ sens } P(v_{\mu} \rightarrow v_{e}) \sim 0.01 \text{ by } 2014$
- NOvA: 3σ sens $P(v_{\mu} \rightarrow v_{e}) \sim 0.005$ by 2015
- NOvA+T2K: some sensitivity to mass hierarchy at the highest currently allowed θ_{13} 's

"Phase 2": NuSAG's current charge

• Next round of accelerator experiments to extend masshierarchy and CP violation sensitivity to $\sin^2 2\theta_{13} \sim 0.01$

From NuSAG's second charge letter:

"Assuming a megawatt class proton accelerator as a neutrino source, please answer the following questions for accelerator-detector configurations including those needed for a multi-phase off-axis program and a verylong-baseline broad-band program."

The questions:

- Scientific potential
- Associated detector options, including rough cost
- Optimal timeline, including international context
- What other scientific inputs are needed?
- What additional physics can be addressed?

Historical context (c.2005-6) and the BNL/FNAL Study Group

• T2K and NOvA use "off-axis" neutrinos to create narrowband beams, and both lay out potential programs including upgraded accelerator power, beams, and detectors.

• Meanwhile, an alternate approach using a "wide-band beam" proposed (originally by Brookhaven groups).

These are the approaches NuSAG is charged to evaluate.

Concurrently, BNL and FNAL have convened a Study Group spanning both approaches – NuSAG's major input.

General consensus: FNAL Main Injector would be the proton source for either approach in the U.S.

Accelerator $v_{\mu} \rightarrow v_{e}$ appearance experiments

Signature:

- Electrons from ν_{e} Charged Current (CC) events
- Quasi-elastic (CCQE) cleanest and allow reconstruction of ν energy (smeared by Fermi motion)

Backgrounds:

- "Intrinsics": ν_{e} from μ and K decay, not oscillation
- "π⁰":
 - produced in higher-energy $\boldsymbol{\nu}$ interactions
 - can resemble electrons if gammas merged or low energy gamma missed
 - Neutral Current (NC) π^0 most insidious

Accelerator $v_{\mu} \rightarrow v_{e}$ appearance experiments

Off-axis approach

• At a fixed angle from π beam direction, π 's of **all** energies give v's of about the **same** energy – a narrow-band beam

- Lose flux, but loss of HE flux decreases NC
- π^0 background at beam energy
- v_e from K at different energy

Ambiguities/degeneracies: examples

At a single energy and baseline (NOvA's used here), a **perfect** measurement of $P(v_{\mu} \rightarrow v_{e}) = 0.02$

• Establishes θ_{13} >0

but

- Is consistent with
 - $0.025 < \sin^2 2\theta_{13} < 0.075$
 - either mass hierarchy
 - any CP phase δ (including zero)
- Need more measurements: anti-v, other E, reactor,...

Examples: With $P(v_{\mu} \rightarrow v_{e}) = 0.02$:

• $P(\bar{v}_{\mu} \rightarrow \bar{v}_{e}) > 0.025$ determines mass hierarchy, > 0.035 establishes CP violation

or:

• Reactor measures $\sin^2 2\theta_{13} > 0.05$: mass hierarchy determined

(thanks to Gary Feldman) 16

$sin^{2}(2\theta_{13})$ vs. $P(\bar{v}_{e})$ for $P(v_{e}) = 0.01$ A harder case: 0.05 $\sin^2(2\theta_{13})$ L = 810 km, 12 km off With $P(v_u \rightarrow v_e) = 0.01$: $\Delta m_{32}^2 = 2.5 \ 10^{-3} \ eV^2$ 0.045 • $P(\overline{v_{\mu}} \rightarrow \overline{v_{e}}) \sim 0.015$ 0.04 leaves mass hierarchy and CP violation 0.035 unknown $\Delta m^2 < 0$ 0.03 Reactor unlikely to

settle things in this region

More measurements: other energies

- Another off-axis detector: 2nd oscillation max?
- Some variation over width of narrow-band beam
- Use a Wide-band Beam (WBB)

Goal: mass hierarchy and CP violation sensitivity down to $\sin^2 2\theta_{13} \sim 0.01$, which seems to be about the max reach of conventional beams

Wide-band Beam approach

- Energy dependence lifts degeneracies
- On-axis beam maximizes flux for long baselines
- Long baselines enhance matter effect

but:

• High energy component brings π^0 background

wble120, numu CC, sin2theta13=0.02, 1300km/0km

In band B: node ≠ peak

U.S. experimental scenarios using these approaches

All start with Fermilab Main Injector

- Max achieved beam power: 315 kW @ 120 GeV
- Initial upgrade plan to 700 kW
- Longer-term upgrade plan to 1.2 MW
- Less beam power at lower energies

Off-axis

- ~100 kt of Liquid Argon TPC
- Use existing/upgraded NuMI beam
- Deploy all at NOvA site, or split with "2nd max", or other

Wide-band beam, very long baseline

- ~300-500 kt of water Cherenkov (or ~100 kt LArTPC)
- In DUSEL
- New neutrino beam

Other physics with 100-500 kt neutrino detectors

Proton decay Neutrinos from galactic supernovae Diffuse SN neutrino background Solar neutrino physics

Note: must ask if these require additional instrumentation

Detector technologies

Water Cherenkov

- Known, successful technology for ν osc and p decay
- Must be (deep?) underground: DUSEL
- R&D on large caverns
- PMT's drive cost and construction time
- R&D for new light sensors

LArTPC

- Ability to reconstruct events in detail \rightarrow excellent π^0 rejection and ~3×efficiency of Water-C
- Aggressive R&D needed to prove feasibility at 50-100 kt scale with drastically reduced costs
- Plausible that it can work at surface proof needed
- $p \rightarrow K^+ v$, a possibly favored proton decay mode

Off-axis

Pro:

- Reduced π^0 background
- Known v energy: use all CC events?
- Use existing beam
- Near detector same as far
- Allows incremental program (but steps still \$\$!)

Con:

- Must deal with ambiguities of ~single energy
- 2nd-max site has very low event rates, HE ν 's from K's
- Detector must be on surface to use NuMI beam cannot use Water-C
- LArTPC needs intensive R&D
- Near detector sees very different beam

Wide-band beam, very long baseline

Pro:

- Full energy spectrum for resolving ambiguities
- Proven technology
- DUSEL deployment gives broader physics program
- Recent progress in Water-C π^0 rejection

Con:

- Large, ~all-at-once cost
- DUSEL timeline consistent with other constraints?
- With PMT's the cost driver, cost sensitive to coverage needed for π^0 rejection, other physics
- Near detector can't be Water-C

Current status and NuSAG plans

- BNL/FNAL Study Group working on directly-comparable sensitivity calculations for the different scenarios
- These define detector mass needed (cost) and may rule out some scenarios
- NuSAG is getting educated on the issues, including current thinking in Japan and Europe
- Findings on technical issues mostly in place, strategy recommendations need sensitivity info
- One strategic issue seems clear: can't start construction on Phase 2 without an observation of non-zero $\theta_{\rm 13}$
- R&D needed: LArTPC, PMT's, large caverns, high beam power
- NuSAG report will be available before next HEPAP meeting