Department of Energy





# HIGH ENERGY PHYSICS PROGRAM BUDGET FY2006

### **High Energy Physics Advisory Panel**

#### Dr. Robin Staffin Associate Director, Office of High Energy Physics February 14, 2005





## FY 2006 Congressional Budget Request

Office of Science

- FY 2006 Request is 3.9% below FY 2005 Appropriation
- The budget forces us to make tough choices.
  - No new starts in FY 2006
  - Prioritizing ongoing programs

(\$M)

|                                     | FY 2004<br>Comparable<br>Approp. | FY 2005<br>Comparable<br>Approp. | FY 2006<br>President's<br>Request | FY 2006 Request vs<br>FY 2005<br>Appropriation |        |
|-------------------------------------|----------------------------------|----------------------------------|-----------------------------------|------------------------------------------------|--------|
| Basic Energy Sciences               | 991                              | 1,105                            | 1,146                             | +41                                            | +3.7%  |
| Advanced Scientific Computing Res.  | 197                              | 232                              | 207                               | -25                                            | -10.9% |
| Biological & Environmental Research | 624                              | 582                              | 456                               | -126                                           | -21.7% |
| High Energy Physics                 | 716                              | 736                              | 714                               | -23                                            | -3.1%  |
| Nuclear Physics                     | 380                              | 405                              | 371                               | -34                                            | -8.4%  |
| Fusion Energy Sciences              | 256                              | 274                              | 291                               | +17                                            | +6.1%  |
| Other                               | 384                              | 270                              | 279                               | +8                                             | +3.1%  |
| Total, Science                      | 3,548                            | 3,605                            | 3,463                             | -142                                           | -3.9%  |





\$127M (~3.7%) decrease over 5 years





# The DOE HEP program in FY 2006

- Overall HEP budget and priorities in FY 2006:
  - Tevatron and B-factory will be fully supported
  - LHC preparations will be fully supported
  - Core research program at the universities and laboratories will be maintained
  - Investment for near and long term new initiatives (including neutrinos and ILC R&D) will be increased
- Any new initiatives will have to come from re-direction

Department of Energy



### High Energy Physics FY 2006 Budget



|                                  |                             | (\$            |                 |                 |                | — (\$M)  |
|----------------------------------|-----------------------------|----------------|-----------------|-----------------|----------------|----------|
|                                  |                             | FY04<br>Actual | FY05<br>Approp. | FY06<br>Request | FY06 -<br>FY05 | % Change |
| Facility ops                     | Tevatron                    | 226            |                 | 223             | -7             | -3.0%    |
|                                  |                             | 0              | 230             | 8               | -7             | -3.0 /0  |
|                                  | NuMI operations             |                | 117             | -               |                | 0.50/    |
|                                  | B-factory                   | 115            |                 | 107             | -10            | -8.5%    |
|                                  | LHC (construction+ops)      | 64             | 62              | 60              | -2             | -2.9%    |
|                                  | LBNL and BNL infrastructure | 6              | 6               | 6               | 0              |          |
| Projects                         | NuMI, Run2B upgrade, GLAST  | 33             | 18              | 2               | -16            | -88.8%   |
|                                  | planned BTeV MIE            | 0              | 7               | 0               | -7             |          |
| Subtotal ops & projects          |                             | 444            | 439             | 406             | -33            | -7.6%    |
| core research                    | University research         | 101            | 100             | 101             | 1              |          |
|                                  | Laboratory research         | 78             | 77              | 76              | -1             | -1.3%    |
|                                  | SciDAC & QCDOC              | 7              | 7               | 7               | 0              |          |
| Subtotal core research           |                             | 186            | 184             | 184             | 0              | 0.0%     |
|                                  | Accelerator R&D             | 43             | 41              | 40              | -1             | -2.4%    |
|                                  | Detector R&D                | 12             | 14              | 13              | -1             | -7.1%    |
|                                  | BTeV R&D                    | 4              | 4               | 0               | -4             |          |
|                                  | LC R&D                      | 20             | 23              | 25              | 2              | 8.7%     |
|                                  | SNAP R&D                    | 3              | 3               | 3               | 0              |          |
|                                  | Neutrino R&D                | 0              | 0               | 10              | 10             |          |
| Subtotal R&D and new initiatives |                             | 82             | 85              | 91              | 6              | 7.1%     |
| Others                           |                             | 4              | 28              | 33              | 5              | 17.9%    |
| Total as shown in FY06 budget    |                             | 716            | 736             | 714             | -23            | -3.1%    |
| SBIR/STTR in FY 2004             |                             | 17             |                 |                 |                |          |
|                                  | Grand Total incl SBIR/STTR  | 733            | 736             | 714             | -23            | -3.1%    |







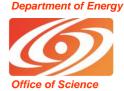



- After the rebaseline in September 2003, the GLAST-LAT project had
  another substantial cost increase and schedule delay
  - Risk of significant negative impact on HEP program, especially Bfactory and LC R&D
  - Significant implications for our future partnerships with NASA
- SAGENAP report from 1998
  - Although proposed technology is from HEP and the science is exciting, the mission is "further removed" from HEP.
  - Concerned about possible cost growth and its associated impact on the rest of HEP program.
  - Advised DOE to make clear that expenses resulting from NASA safety and review requirements are to be borne by NASA and consider establishing a funding cap.
- Administration has acted to limit DOE's exposure to further cost growth






# Lessons learned from GLAST


- Ensure that the scale of the contribution expected from DOE-HEP matches the importance of the science to our core mission
- Listen carefully to our advisory committees and follow up on their recommendations
- Understand the cost impact of building detectors which
  - Can tolerate speed of 10g and temperature variation of >150°
  - Will have 100% reliability under extreme conditions
- Clearly define responsibilities for interagency ventures
  - Especially when project rules, performance measures, and culture are very different
- Upfront planning manpower resources





- The Department of Energy has decided not to proceed with the BTeV experiment at Fermilab
- This decision is based on the recommendations of the P5 subpanel of HEPAP, given
  - the President's budget request for 2006,
  - expectations of funding levels in the outyears,
  - the need to support the ongoing program at the Tevatron, PEP-II and the LHC, and enhance ILC R&D.
- The decision was not taken lightly: BTeV is an excellent experiment whose scientific merit has been reaffirmed on numerous occasions.
- We thank and commend the members of the BTeV collaboration and Fermilab for their hard work in developing such an excellent proposal, and we ask them to understand that this is in no way a reflection on the quality of their work.





# **BTeV Decision: Rationale**

• However, as P5 noted, the experiment needs to be completed rapidly in order to compete in physics results with LHCb:

"[...] the staging scenario stretches the BTeV schedule as far as we can support. If various constraints, budget or technical, would result in a completion date beyond the end of FY 2010, we would not support a start of the project."

- This urgency was recognized by the BTeV collaboration, the laboratory and DOE to expedite this project, and the approval process was handled with that in mind.
- It is now clear, unfortunately, that it was not possible for the experiment to be completed on the schedule stated by P5 as being the latest tolerable.
- Given this outcome, we have decided not to start the project.
- No one would benefit from proceeding with a drawn-out schedule that would leave BTeV unable to compete effectively.





- In FY 2009, at the end of Tevatron Run II, Fermilab will still be operating NuMI/MINOS for at least another year, and will participate in LHC and various particle astrophysics programs. The future of Fermilab past the end of the decade will be the subject of a continuing dialogue between the Administration, Congress, the laboratory, and the broader U.S. and international particle physics communities.
- We now look forward to working with Fermilab management to develop the strongest possible future for the laboratory as well as for the overall HEP program.
- The laboratory's Long Range Plan has laid out a broad and exciting program for the next decade, centered on the International Linear Collider, significant new initiatives in neutrino physics, the LHC physics center, and particle astrophysics and underground experiments.
- We are committed to maintaining Fermilab as one of the world leading scientific facilities.





- In order to inform the Department of HEP's intent to pursue several new scientific topics, we plan to prepare draft requests for approval of CD-0 "Statement of Mission Need", including
  - A generic reactor-based neutrino experiment to measure  $\theta_{13}$
  - A generic off-axis accelerator-based neutrino experiment for  $\theta_{13}$  and to resolve the neutrino mass hierarchy
  - A generic high intensity neutrino beam facility for neutrino CPviolation experiments
  - A generic neutrinoless double-beta decay experiment to probe the Majorana nature of neutrinos
  - A generic underground experiment to search for direct evidence of dark matter
  - A generic ground-based dark energy experiment
- In order to be ready to move forward expeditiously, this process will be in parallel with a Scientific Advisory Group (SAG) and P5 process that I will describe tomorrow.