Physics opportunities at a Super Flavor Factory in The LHC era

Hassan Jawahery University of Maryland

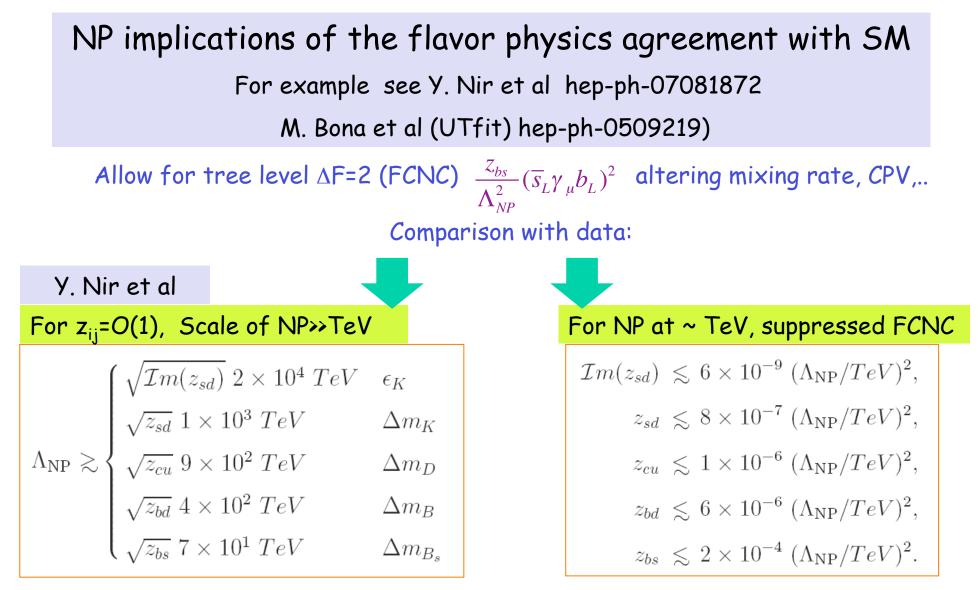
> HEPAP meeting May 21, 2009

Acknowledgment:

Discussions with D. MacFarlane, D. Leith, D. Roberts, G. Simi

A rich set of documents & talks on studies and discussions of flavor physics in the LHC era:

Super KEKB LOI


Super B LOI

D. Hitlin et al, Proceeding of Super B physics workshop hep-ph-0810.1312

Grossman, Ligeti & Nir hep-ph-09004.4262
Browder, Ciuchini, Gershon, Hazumi, Hurth, Okada & Stocchi, hep-ph-0710.3799
A. Hoecher et al hep-ph-0104062 /hep-ph-0406184 (CKMfitter collab.)
M. Bona et al (UTfit collaboration), hep-ph-0509219
Goto, Okada, Shindou, Tanaka hep-ph-0711.2935
LHCb physics reach: Talk by Ulrich Uwer, Moriond EW (2009)
Talks by Giorgi, Ciuchini, Stocchi, Hitlin, Yamauchi, Browder, Nir,, Ligeti, Silvestrini, Gershen, Hazumi

Why do flavor physics in the LHC era?

- Rare flavor processes are sensitive to physics at higher energies: a proven technique.. K⁰ mixing->charm mass, B⁰ mixing->top mass limit,...
- > At the current precision of the data, it is shown that Flavor Physics is sensitive to TeV scale effects.
 - > Together with direct observation of NP at LHC, flavor physics can help uncover its flavor structure.
 - Observed FCNC processes are very small & their properties are consistent with SM. Why is there no modification due to NP? This has very important implications for the flavor structure of NP & must be measured with much higher precision.
- > Baryon asymmetry problem is still not solved:
 - > CPV phases in the NP flavor sector could be responsible.

It is clear that Flavor Physics is already sensitive to NP at energy scales well above TeV & has as message on the NP flavor structure.

Flavor Physics program in the LHC era

- If New Physics is found at LHC, then its flavor structure must be discovered:
 - New CPV phases
 - Flavor interactions involving right-handed currents
 - FCNC processes could be present at the lowest level
 - Lepton Flavor Violation in charged leptons
- If no New Physics is found at the TeV energy regime:
 - Then, Flavor physics will serve as a powerful way of probing physics at much higher energies.

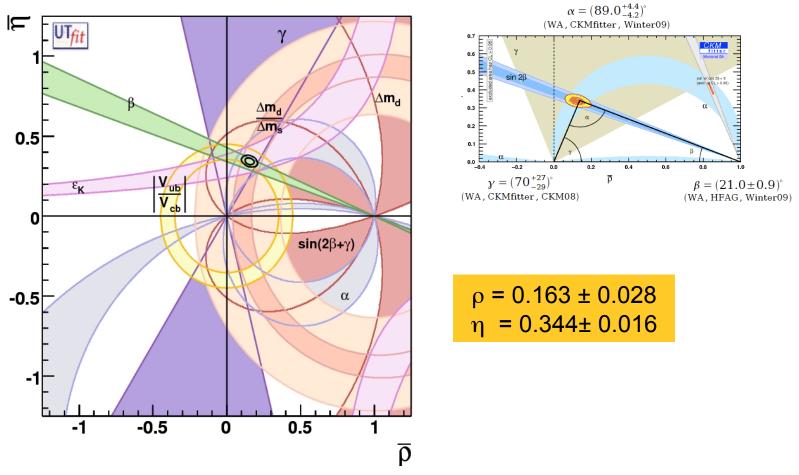
The key experimental handles:

- > CKM parameters (aiming for O(1%) level)
- FCNC processes
- Lepton Flavor Violation

Next generation of Flavor Experiments

At LHC:

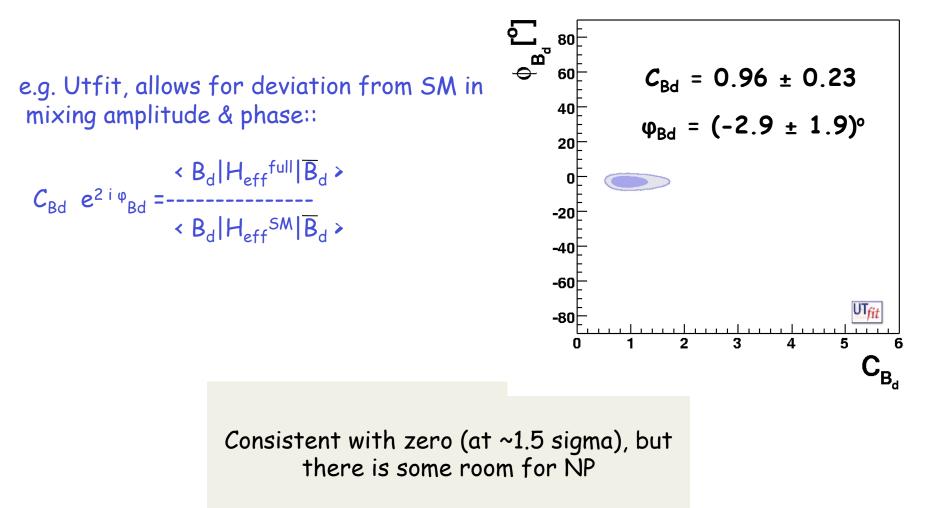
- LHCb: At L~ $2x10^{32}$ /cm²/s Expect ~10/fb in 5 yrs Incoming rate ~ 10^{12} B's/Yr(2/fb) +trigger B_d, B_u, B_s, B_c, Λ_{b} ,...

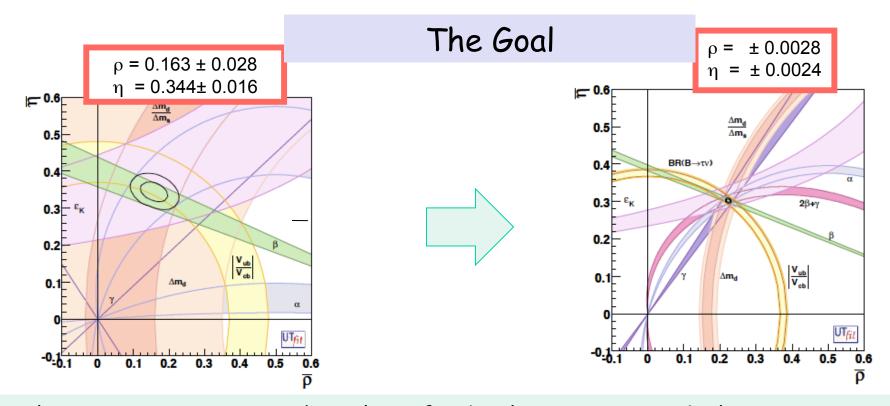

- ATLAS and CMS The main focus on $B_s \rightarrow \mu\mu$ (SM Br~3×10⁻⁹)

- <u>In planning:</u>
- An asymmetric energy e⁺ + e⁻ collider to operate mainly at the Y(4S) resonance:
 - Super KEKB in Japan
 - SuperB in Frascati, Italy
- At L ~10³⁶ /s/cm2
 Aiming for a data set of ~ 50 to 75/ab in 5 yrs.
 - ~10¹¹ B decays
 - $\sim 10^{11}$ tau decays
 - $\sim 10^{11}$ charm decays
 - →BaBar+Belle (~1.4/ab) : ~10⁹ B's
 - polarized beam(s) are also considered.

10 ¹¹	The 50/ab phase: Study the flavor structure of New Physics through				
10 ¹⁰	precision measurements of CKM [O(1%) level], precision measurements of FCNC processes & Lepton Flavor Violation- a complementary program to the direct search for NP at LHC.				
10 ⁹	The 1/ab phase: D0 mixng, CPV in pure penguin processes, Leptonic				
	$B \rightarrow \tau v$; Bs mixing at Tevatron & , limit on tau LFV< 10 ⁻⁷ ; Hints of				
	tension (~2 σ) with SM: CKM fit, K π puzzle, ϕ s, polarization effects,				
	Precision sin2 β ; $\alpha \& \gamma$ measured; CKM over-constrained and				
10	established as the primary source of observed CPV effects.				
#B's	Observation of direct CPV in $B \rightarrow K\pi$.				
	2001 - CPV in B decays observed. Sin2B consistent with SM				
10 ⁷	2001- CPV in B decays observed. Sin2β consistent with SM 1999- B Factories start operation.				
	1999- DT actories start operation.				
10 ⁶	1993-CLEO observed loop level processes in B decays: b→sγ;				
10	constraints on charged higgs mass & SUSY models				
	<u>B factory projects launched.</u>				
10 ⁵					
	1987-B ^o mixing & V _{ub} measured; <u>Lower bound on m(top)> 42 GeV</u> ; Well ahead of				
10 ⁴	energy frontier of the time. With non-zero V _{ub} , CKM in the game as a source of CPV				
	1982-B meson observed 7#				

Precision measurement of CKM


Global CKM fit- current status



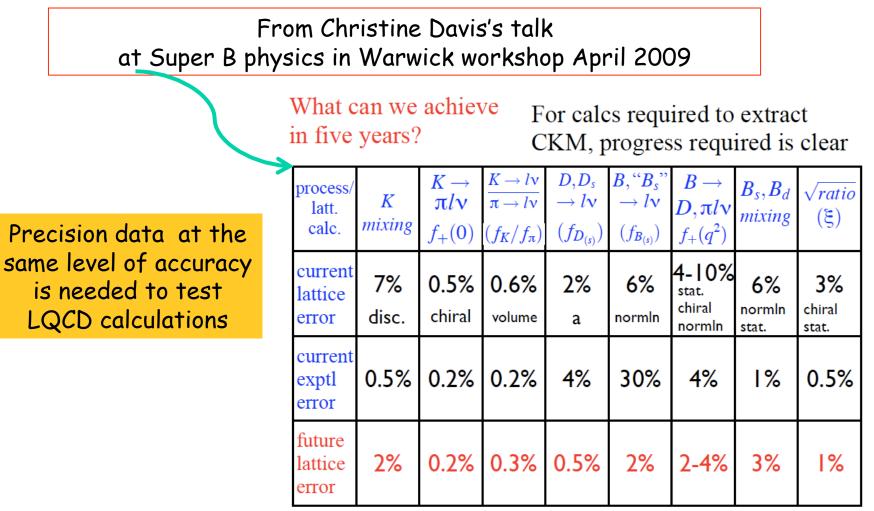
The Standard Model is remarkably accurate in describing flavor physics measurements. But there are a few areas of tensions with data.

Any room for NP in the CKM parameters?

The global fits (CKMfitter and UTfit) have tried model independent methods to determine the size & phase of non-SM component.

•<u>This is an enormous undertaking for both experiment & theory:</u> To reach this goal, accuracy of the theoretical inputs must match the experimental precision:

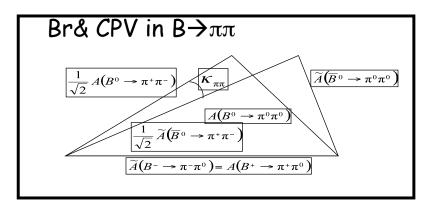
>Improved Lattice QCD calculations of decay constants & form factors are needed for B mixing parameters, leptonic decays, $|V_{ub}|$, $|V_{cb}|$,...


> The experience of B factories shows that: we need comprehensive measurements of all channels connected through known symmetries, e.g. Isospin, SU(3) etc. (The stories of $\alpha & \gamma$ – involving many channels- are good examples)

Expected experimental precision of CKM observables

Observable	B Factories (2 ab^{-1})	SuperB (75 ab^{-1})
$\overline{\sin(2\beta)~(J/\psi~K^0)}$	0.018	0.005 (†)
$\cos(2eta)~(J/\psi~K^{*0})$	0.30	0.05
$\sin(2eta)~(Dh^0)$	0.10	0.02
$\cos(2eta)~(Dh^0)$	0.20	0.04
$S(J/\psi \pi^0)$	0.10	0.02
$S(D^+D^-)$	0.20	0.03
$\alpha \ (B \to \pi \pi)$	$\sim 16^{\circ}$	3°
$\alpha \ (B \to \rho \rho)$	$\sim 7^{\circ}$	$1-2^{\circ}$ (*)
$\alpha \ (B \to ho \pi)$	$\sim 12^{\circ}$	2°
$lpha \ (ext{combined})$	$\sim 6^{\circ}$	$1-2^{\circ}$ (*)
$\gamma \ (B \to DK, D \to CP \text{ eigenstates})$) $\sim 15^{\circ}$	2.5°
$\gamma~(B \rightarrow DK, D \rightarrow \text{suppressed stat})$	ies) $\sim 12^{\circ}$	2.0°
$\gamma \ (B o DK, D o $ multibody state	es) ~ 9 ?	1.5°
$\gamma~(B ightarrow DK, ext{ combined})$	$\sim 6^{\circ}$	$1-2^{\circ}$
$ V_{cb} $ (exclusive)	4% (*)	1.0% (*)
$ V_{cb} $ (inclusive)	1% (*?	0.5% (*)
$ V_{ub} $ (exclusive) $ V_{ub} $ (inclusive)	8% (*) 8% (*)	3.0% (*) 2.0% (*)

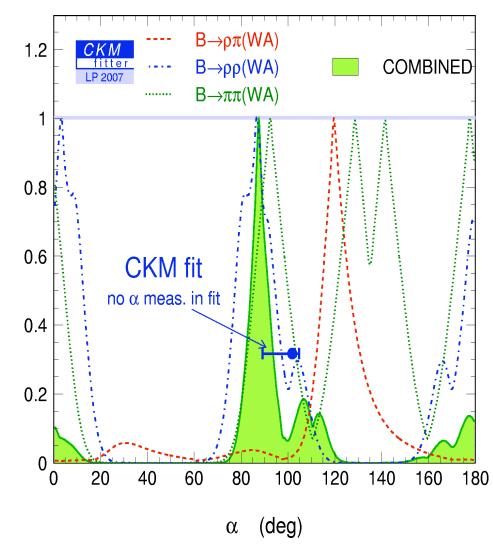
Expected progress on theoretical inputs


percent level calculations are promised for Lattice QCD on the Super B time scale

+ penguins, further boxes and related calcs.....

More on controlling theory input: an example

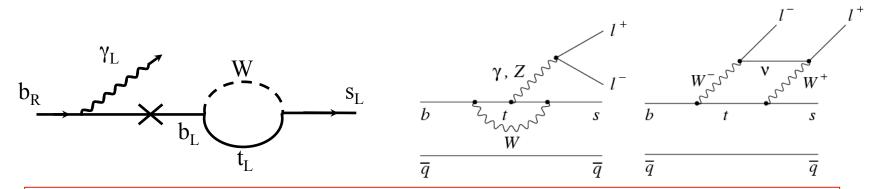
1- CL



The full Time-dependent Dalitz Analysis of

The entire $B \rightarrow \rho \rho$ components for isospin analysis & Timedependent CPV

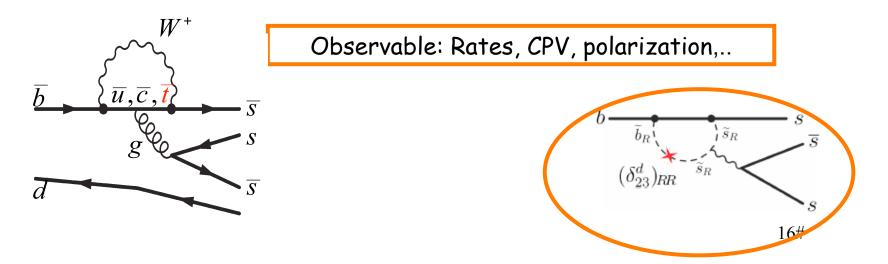
 $\mathsf{B} \rightarrow \pi\pi\pi(\rho^+\rho^-, \rho^+\rho^0, \rho^0\rho^0)$


The story of $\boldsymbol{\alpha}$ at the B factories

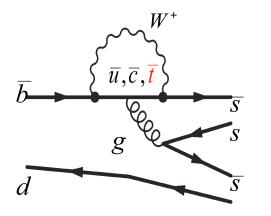
14#

Searches for New Physics via FCNC processes

Searches for New Physics via FCNC decays of B


Rates

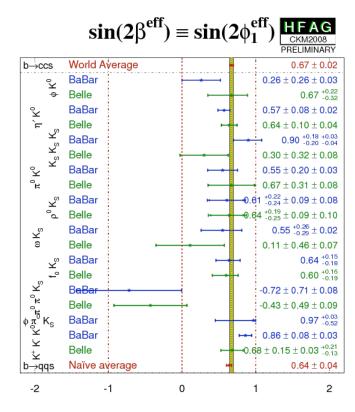
•Photon helicity in $b \rightarrow \gamma_L s$ (γ left-handed in SM)


•Direct CP violation – nearly zero in SM

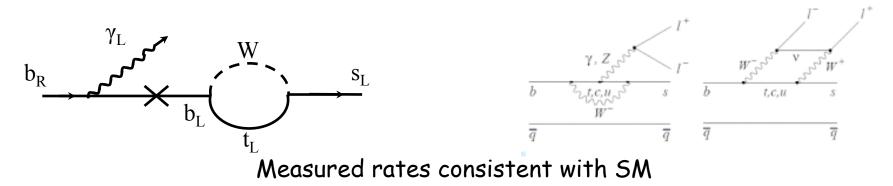
•In B \rightarrow KII- q² dependence of the rate; FB asymmetry, CPV in FB asymmetry

Search for modification of Wilson coefficients C7, C9, C10 & new operators

CP violation in Penguin dominated B Decays


>In SM: Time-Dependent CP violation: S ~ sin2 β >Looking for a Δ S=S-sin2 β , sensitive to new CPV phases. >Must understand SM predictions for Δ S

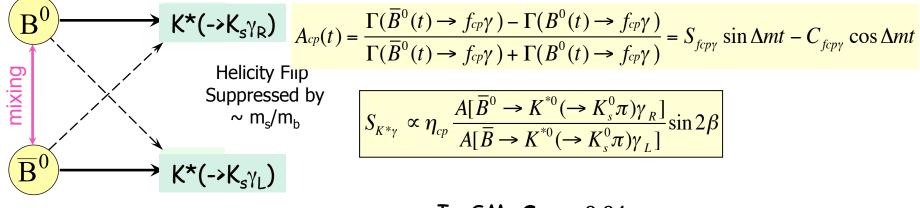
• QCD calculations


•Comprehensive measurements of many channels and the use of symmetries to relate them.

Current data is now consistent with SMa small tension still present

Channel	Channel 2/ab 75/	
$S(\phi K^0)$	0.13	$0.02\;(*)$
$S(\eta' K^0)$	0.05	$0.01\;(*)$
$S(K_s^0K_s^0)$	0.15	$0.02\;(*)$
$S(K^0_s\pi^0)$	0.15	$0.02\;(*)$
$S(\omega K^0_{s})$	0.17	$0.03\;(*)$
$S(\underline{f_0}K_s^0)$	0.12	$0.02\;(*)$

B decays through radiative penguins

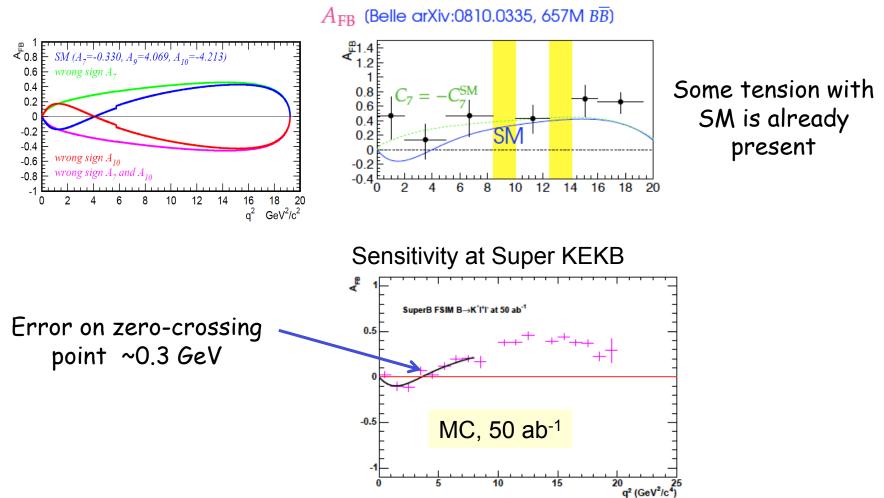


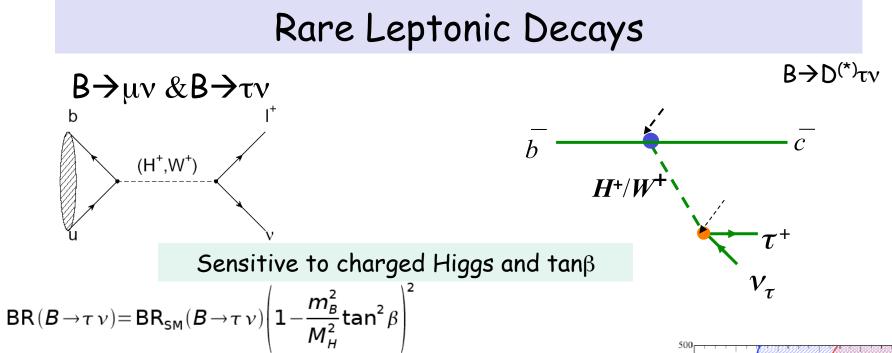
	Observable	B Factories (
Key observables	$\mathcal{B}(B \to \tau \nu)$	20%
•Rates	${\cal B}(B o \mu u)$	visibl
	$\mathcal{B}(B o D au u)$	10%
 Sensitive to charged higgs & couplings 	${\cal B}(B o ho\gamma)$	15%
 Direct CP violation: 	${\cal B}(B o ho\gamma) \ {\cal B}(B o \omega\gamma)$	13 % 30 %
	$A_{C\!P}(B o K^* \gamma)$	0.007 (
 Very close to zero in SM 	$A_{C\!P}(B o ho\gamma)$	~ 0.2
•Forward-Backward asymmetry A _{FB} (q ²)	$A_{C\!P}(b o s \gamma)$	0.012 (
TO Ward-Backward asymmetry AFB (4)	$A_{C\!P}(b ightarrow (s+d) \gamma)$	0.03
•CPV in AFB	$S(K^0_s\pi^0\gamma)$	0.15
	$S(ho^0\gamma)$	possib
 Photon helicity as a probe of right-handed 	$A_{CP}(B o K^* \ell \ell)$	7%
currents	$A^{FB}(B \to K^*\ell\ell)s_0$	25%
	$A^{FB}(B \to X_s \ell \ell) s_0$	35%
 Isospin asymmetry 	$\mathcal{B}(B \to K \nu \overline{\nu})$	visibl
	\mathbf{n} (\mathbf{n} -)	

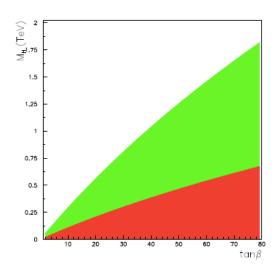
Observable	B Factories (2 ab^{-1})	Super B (75 ab	
$\mathcal{B}(B \to \tau \nu)$	20%	4% (†)	
$\mathcal{B}(B o \mu u)$	visible	5%	
$\mathcal{B}(B \to D\tau\nu)$	10%	2%	
$\mathcal{B}(B o ho \gamma)$	15%	3% (†)	
${\cal B}(B o\omega\gamma)$	30%	5%	
$A_{CP}(B o K^* \gamma)$	0.007 (†)	0.004 († *)	
$A_{CP}(B o ho \gamma)$	~ 0.20	0.05	
$A_{C\!P}(b o s \gamma)$	0.012 (†)	0.004 (†)	
$A_{C\!P}(b ightarrow (s+d)\gamma)$	0.03	0.006 (†)	
$S(K^0_s\pi^0\gamma)$	0.15	0.02 (*)	
$S(ho^0\gamma)$	possible	0.10	
$A_{CP}(B \to K^* \ell \ell)$	7%	1%	
$A^{FB}(B \to K^*\ell\ell)s_0$	25%	9%	
$A^{FB}(B \to X_s \ell \ell) s_0$	35%	5%	
$\mathcal{B}(B \to K \nu \overline{\nu})$	visible	20%	
$\mathcal{B}(B \to \pi \nu \bar{\nu})$	-	possible	

Probing right-handed currents through radiative B penguins

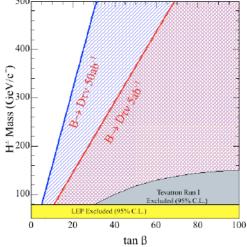
For in $b \rightarrow \gamma_L s$ - employ time-dependent CP asymmetry to determine the helicity of photon: proposed by Atoowd, Gronau, & Soni (1997)

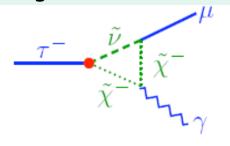

In SM: **S**_{K*γ} ~0.04

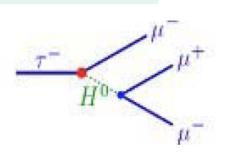

The value of $S_{K^*\gamma}$ is a measure of the magnitude of a right-handed current in the process- present in many NP models.


Current data: $S_{K^*\gamma} = -0.16 \pm 0.22$ With 50/ab, expect: $\sigma(S_{K^*\gamma}) \sim 0.02$

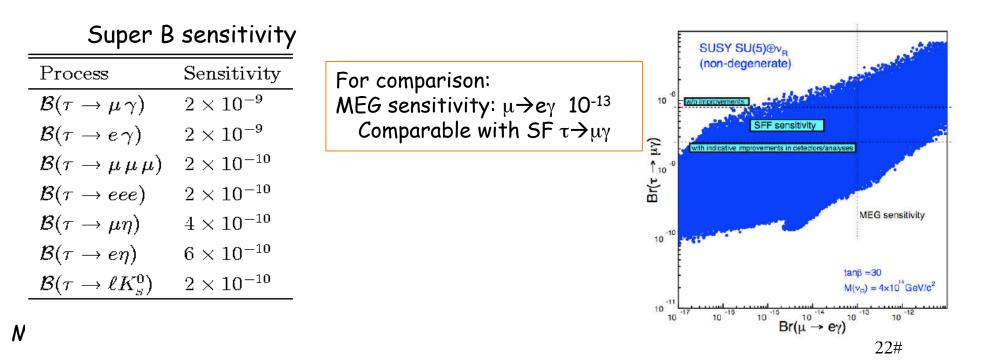
B decays through radiative penguins: $B \rightarrow K(*)|^{+}|^{-}$


•Forward-Backward asymmetry $A_{FB}(q^2)$ in $B \rightarrow K(*)I^+I^-$ is a powerful probe of NP Belle


Observable	B Factories (2 ab^{-1})	Super B (75 ab
$\mathcal{B}(B \to \tau \nu)$	20%	4% (†)
$\mathcal{B}(B \to \mu \nu)$	visible	5%
$\mathcal{B}(B \to D \tau \nu)$	10%	2%



Lepton Flavor Violation


Within SM-LFV in charged leptons is extremely suppressed: Br~ 10⁻⁵⁰ Many NP models predict much larger rates

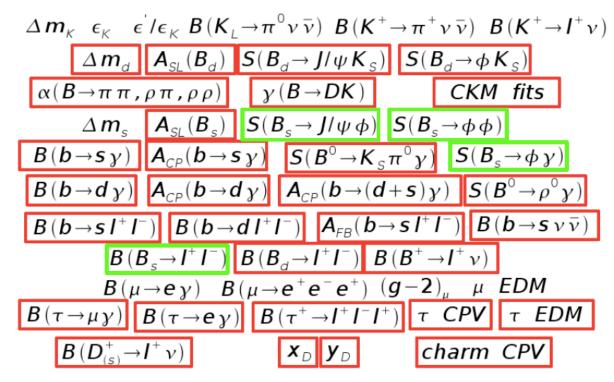
e.g. $\mu \rightarrow e\gamma \& \tau \rightarrow \mu\gamma \& \& \tau \rightarrow \mu\mu\mu$

Current data: B(τ->μγ) <4.5x10⁻⁸ (Belle) <6.8x10⁻⁸ (BaBar)

Other physics possibilities

- > CP violation in charm decays and mixing
 - Highly suppressed in SM, thus a good place to look for deviation from SM
- Possibility of polarized beams enhances the physics reach of the LFV studies in τ decays:
 - It helps in background discrimination
 - If observed, it allows for exploring the chiral structure of the physics responsible for the process
- Quarkonium physics:
 - Search for light Higgs and dark matter candidates
 - Study QCD effects and new states- XYZ-like- yet to be understood

Super B & LHCb


•The two programs are largely complementary

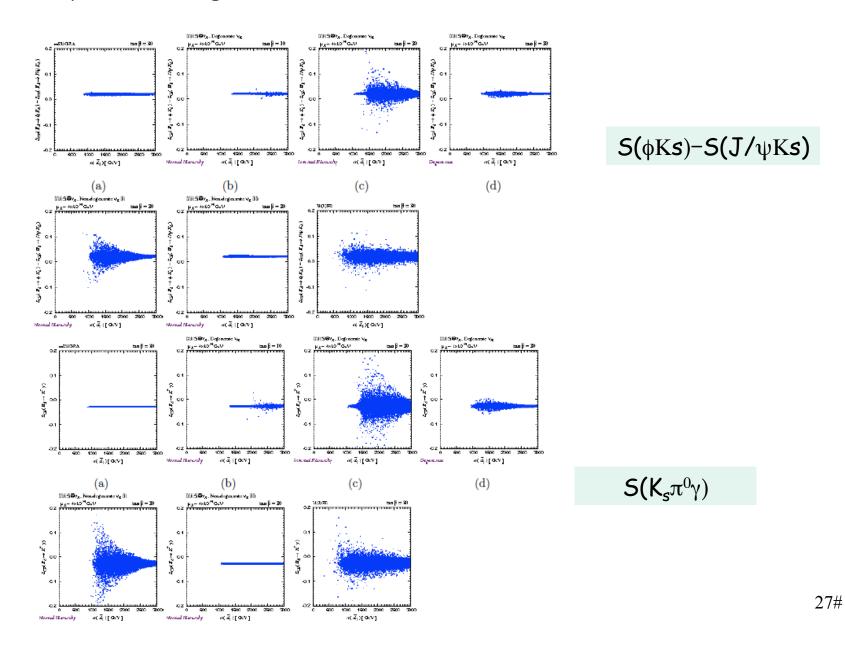
>LHCb will dominate the B_s measurements & some exclusive channels in B_d

>Super B will have full coverage of B_d , (Bs coverage from 5S run), charm and tau decays.

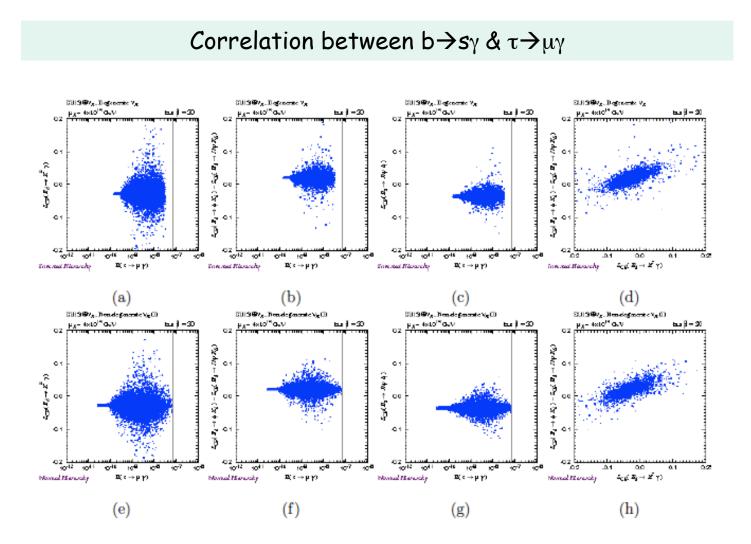
> Including inclusive channels and modes containing neutrals.

A lineup of key flavor measurements (M. Ciuchini)

Super B & LHCb-comparisons in a few modes


	LHCb(10/fb)	Super Flavor (75/ab)
$B_s \rightarrow \mu^+ \mu^-$	SM seen at 5σ	
Φ_{s}	0.01	
γ (DK)	2-3°	1-2°
α ($\pi\pi$, $ ho\pi$, $ ho ho$)		1-2°
S(J/ψK _s)	0.01	0.005
5(φK _s)		0.03
Տ(ղ՝ K _s)		0.02
S(π ⁰ K _s)		0.02
S(K* γ)		0.03
S(φγ)	0.03	
Α _{cp} (Κ*γ)	0.01	0.004
A _{cp} (b->sγ)		0.005
A _{FB} (K*II)	36 K	15 K
q ² zero-crossing	0.28 GeV	0.25 GeV
B→K*vv		20% meas. Of SM
Β→τν		4%
τ>μγ		2×10 ⁻⁹

Is there a "Golden" mode/measurement?


- There is no obvious single "golden" measurement for testing NP effects
 Sin2β was considered the "golden" measurement for testing the CKM
 In reality, while sin2β helped establish CPV in B's- the CKM test required a great number of measurements.
- For the Flavor Physics program in NP era: The "golden" signature is likely to be the emergence of a pattern of deviations from the SM in a key set of channels.

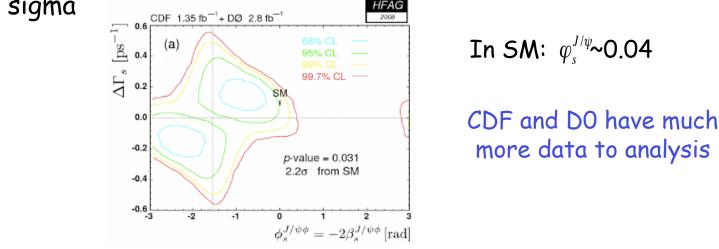
	H^+	Minimal	Non-Minimal	Non-Minimal	NP	Right-Handed
	high ${\rm tan}\beta$	\mathbf{FV}	FV (1-3)	FV (2-3)	Z-penguins	currents
$\mathcal{B}(B \to X_s \gamma)$		Х		0		О
$A_{CP}(B \rightarrow X_s \gamma)$				Х		О
$\mathcal{B}(B \to \tau \nu)$	X- CKM					
$\mathcal{B}(B \rightarrow X_s l^+ l^-)$				O	0	Ο
$\mathcal{B}(B \to K \nu \overline{\nu})$				0	Х	
$S(K_S \pi^0 \gamma)$						Х
β			X- CKM			О

T. Goto, Y. Okada. T. Shindou, M. Tanaka (hep-ph-0711.2935) on pattern of signals in flavor observables for various SUSY models.

More on pattern of signals from SUSY T. Goto, Y. Okada. T. Shindou, M. Tanaka

Conclusions

- Experimental studies of flavor is a necessary and complementary program to the direct search for New Physics at LHC.
- A Super B factory at L~10³⁶ /s/cm² allows for comprehensive studies of a broad set of rare decay processes in B, charm and tau decays with sensitivity to NP in the TeV scale.
- The overall pattern of deviations from SM will serve as a means for studying the flavor properties of NP.
- The physics reach of LHCb and Super B factories are complementary-allowing for a complete set of precision measurements including the ${\rm B}_{\rm s}$ system.
 - **Experience of B factories has shown that the success in this already very mature field depends heavily on having a full set of measurements in all related channels: both to understand and control the theoretical inputs and to distinguish NP effects from SM background.


Back up slides

A few tensions with SM/(Indications for NP?)

• The K π puzzle: $A_{CP}(B^-(\overline{b}u) \to K^+\pi^0) - A_{CP}(B^0(\overline{b}d) \to K^+\pi^-) - = 0.148 \pm 0.028$

Possible NP contributions or an innocent SM effect? Needs a complete analysis of the $B \rightarrow K\pi$ system (K⁺ π^- , K⁺ π^0 , K⁰ π^0 , K⁰ π^+) system to rule out the SM hypothesis – current data consistent with SM.

• Tevatron measurement of B_s mixing phase : $\varphi_s^{J/\psi}$ deviates from SM by ~2.2 sigma

 The pattern of polarization measurements in B→VV channels do not follow SM expectation.