SLAC PEP-II/BaBar Status

Persis S. Drell SLAC

B-Factory Physics Program

Campaign of precision measurements to define the charged weak sector of the SM and CKM parameters

- "Defining SM of weak interactions of quarks"
- Highly constrained and redundant set of precision tests of weak interactions in the Standard Model
 - legacy of fundamental constraints on future New Physics discoveries
 - Sensitivity to New Physics at LHC mass scales
 - "Testing SM of weak interactions of quarks"
- Discovery potential from large data sample across range of heavy quark and lepton flavor, two-photon and ISR physics

A brief history of major milestones in B physics

The B factory: PEP II Machine & BaBar Detector

USA [38/311]

California Institute of Technology UC, Irvine UC, Los Angeles UC. Riverside UC, San Diego UC, Santa Barbara UC. Santa Cruz U of Cincinnati U of Colorado Stanford U Colorado State U of Tennessee Harvard U U of Texas at Austin U of Iowa U of Texas at Dallas Iowa State U Vanderbilt LBNL U of Wisconsin LLNL Yale U of Louisville U of Maryland U of Massachusetts, Amherst MIT U of Mississippi Mount Holyoke College SUNY, Albany U of Victoria U of Notre Dame Ohio State U U of Oregon U of Pennsylvania Prairie View A&M U Princeton U SLAC U of South Carolina

The **BABAR** Collaboration

11 Countries 80 Institutions 623 Physicists

> LPNHE des Universités Paris VI et VII Ecole Polytechnique, Laboratoire Leprince-Ringuet CEA, DAPNIA, CE-Saclay

Germany [5/24]

Ruhr U Bochum U Dortmund Technische U Dresden U Heidelberg U Rostock

[12/99] Italy

INFN Bari INFN. Ferrara Lab. Nazionali di Frascati dell' INFN INFN, Genova & Univ INFN, Milano & Univ INFN, Napoli & Univ INFN, Padova & Univ INFN, Pisa & Univ & Scuola Normale Superiore

INFN, Perugia & Univ INFN, Roma & Univ "La Sapienza" INFN, Torino & Univ INFN, Trieste & Univ

The Netherlands [1/4] NIKHEF, Amsterdam

Norway

U of Bergen

Budker Institute, Novosibirsk

[2/3]

IFAE-Barcelona IFIC-Valencia

Spain

United Kingdom

[11/75]

U of Birmingham U of Bristol Brunel U U of Edinburgh U of Liverpool Imperial College Queen Mary , U of London U of London, Royal Holloway U of Manchester Rutherford Appleton Laboratory U of Warwick

[4/24] Canada

China [1/5]

Inst. of High Energy Physics, Beijing

[5/53]

France

LAPP, Annecy LAL Orsay

Physics Harvest of Summer 2006 Runs 1-5

Submitted 114 papers to the ICHEP 2006 in Moscow http://www-public.slac.stanford.edu/babar/ICHEP06_papers_temp.htm

Date taken to June1, 2006 presented in July/August conferences

Measurements related to alpha (5) Measurements related to beta (14) Measurements related to gamma (8) Charmless B Decays (18) B decays to open Charm (12) Semileptonic B decays (10) Radiative Penguin and Leptonic B decays (10) Charmonium and Charm Spectroscopy (16) Production and decay of Charm and Charmonium states (13) Tau and low energy physics (8) & 26 Invited Talks

Defining* CKM Quark Mixing

Highly constrained and redundant set of precision measurements

	World Average
	2006
$\sigma(\alpha)$	~11°
$\sigma(sin(2\beta))$	~0.04
σ(γ)	~19°
$\sigma(V_{ub})$	~7%

* $\sigma(V_{td}/V_{ts})$ from Tevatron

Measured by 'HEP Long Term Metric' -- 1

Definition of "Successful"- part 1:

 Measure the matter-antimatter asymmetry in the primary (B-> J/psi K) modes to an overall relative precision of 4%

Measuring α

BaBar: $\alpha \in [86, 114]$ at 68% c.l.

 $\alpha = 93^{+11}_{-9}$ (B \rightarrow $\rho\rho$, $\pi\pi$, $\rho\pi$) (WA)

Already the error is systematic (theory) dominated.

At ~2/ab, expect $\sigma(\alpha) \sim 7^{\circ} - 10^{\circ}$ depending on the size of B-> $\rho^{0}\rho^{0}$.

Measuring B-> $\rho^0\rho^0$ & its Time-dependent CP asymmetry will shrink errors further.

Looking to the Future

Increasing precision in CKM Quark Mixing Parameters

	World Average 2006	World Average 2008
σ(α)	~11 ⁰	~8 ⁰
$\sigma(sin(2\beta))$	~0.04	~0.02
σ(γ)	~19 ⁰	~5-10 ⁰
$\sigma(V_{ub})$	~7%	~5%

Testing CKM Quark Mixing

Look for evidence of new physics and new phases that can enter in B decays via loop diagrams

- $b s ||^{-}$
- b->sγ
- B->τν
- Tests with Direct CP violation
- Charm and Tau decays also provide powerful window for new physics searches
 - D mixing
 - LFV in τ decays

Measured by 'HEP Long Term Metric' -- 2

Definition of "Successful"- part 2:

- Measure the time-integrated asymmetry in at least 15 additional modes to an absolute precision of <10%. [We include all other CPV measurements]
 - Not there yet, but expect to reach there with the "1/ab" data
- Some of the channels being measured:

Simple average: $S_{penquins}$ =0.52 +/- 0.05 vs reference point: sin2 β =0.68+/-0.03

~ 2.5 σ deviation at this point.

Eagerly waiting for more data

Measured by 'HEP Long Term Metric' -- 2

Definition of "Successful"- part 2: ≻More channels..

$sin(2\beta^{eff})/sin(2\phi_1^{eff}) \underset{\text{PRELIMINARY}}{\text{HFAG}}$					
b→ccs	World Average		0.69 ± 0.03		
BaBar °⊭ Belle ⊃ Average	BaBar	-	0.68 ± 0.30 ± 0.04		
	Belle	, <mark>H</mark>	0.72 ± 0.42 ± 0.09		
		0.69 ± 0.25			
⊡ BaBar [†] ⊔ Average	BaBar 🗕		0.29 ± 0.63 ± 0.06		
		0.29 ± 0.63			
BaBar D Belle Average		0.75 ± 0.25 ± 0.03			
		0.75 ± 0.56 ^{+0.10}			
		0.75±0.23			
	-1	0	1 2		

 $S(\rho^+\rho^-) = -0.19 \pm 0.21^{+0.05}_{-0.07}$ $C(\rho^+\rho^-) = -0.07 \pm 0.15 \pm 0.06$

Measured by the 'HEP Long Term Metric'—3 Direct CP Violation

The Message from New Physics Fits to CKM observables*

- New sources of CP violation in b→d & s→d are strongly constrained
- New Physics contributions to the b→s transitions are much less constrained & are in fact well motivated by models explaining large mixing angles in neutrino sector-

* L. Silvestrini UTFit LP2005

The physics reach of the BaBar Data: charm

Charm physics with $\sim 0.4 \times 10^9 \text{ cc}$

Search for D0 mixing – highly suppressed in SM- a powerful window for NP searches

Observables:

CP even state: width Γ_1 , mass m_1 ;

CP odd state: width Γ_2 , mass m₂

$$\mathbf{y} = (\Gamma_1 - \Gamma_2) / (\Gamma_1 + \Gamma_2) = \Delta \Gamma / 2\Gamma$$

$$\mathbf{x} = (\mathbf{m}_1 - \mathbf{m}_2) / \Gamma = \Delta \mathbf{m} / \Gamma$$

D^o Mixing Still consistent with zero. Limits approaching the SM expectation

The physics reach of the BaBar data: τ decays

B factory data the primary source for searches for Lepton Flavor Violation (LFV) in τ decays: Recent results on:

 $\tau \rightarrow \mu \gamma \& \tau \rightarrow e \gamma - \tau \rightarrow \mu \eta \&$ (Lepton and Flavor Violating decays) $\tau \rightarrow \Lambda h$ highly suppressed in SM;

Limits on Branching ratios: @90% C.L BaBar: $Br(\tau \rightarrow \mu \gamma) < 0.68 \times 10^{-7}$ $Br(\tau \rightarrow e \gamma) < 1.1 \times 10^{-7}$ Belle: $Br(\tau \rightarrow \mu \gamma) < 0.41 \times 10^{-7}$ $Br(\tau \rightarrow e \gamma) < 1.2 \times 10^{-7}$

Example of how it impacts

Looking Forward with PEP-II

PEP-II Long Term Run Schedule

- Run 5b: November 14, 2005-August 21, 2006
- Down: September-December 2006
 - Safety checks
 - Major upgrades for PEP-II
 - Major upgrades for BaBar
 - LCLS installation
- Run 6: January-August 2007
- Down: September-November 2007
- Run 7: December 2007-September 2008

Summary of Run 5

- Commissioned new RF allowing increased beam currents
- Dedicated work on optical magnet lattice for both rings paid off
 - Reduced beta errors around ring
 - Horizontal tunes closer to half integer
 - Higher beam-beam tune shifts
 - High specific luminosity
 - Better stability at high beam current
- New records in all performance milestones for PEP-II
 - L_{peak}=1.21 x 10³⁴ cm⁻² s⁻¹ (4x design)
 - Int $L_{24 \text{ hrs}} = 911 \text{ pb}^{-1}$ (7x design)

PEP-II Records

Peak Luminosity

Last update: August 18, 2006

12.069×10³³ cm⁻²sec⁻¹ 1722 bunches 2900 mA LER 1875 mA HER

August 16, 2006

Integration records of delivered luminosity

Best shift (8 hrs. 0:00, 08:00, 16:00)	339.0 pb ⁻¹	Aug 16, 2006
Best 3 shifts in a row	910.7 pb ⁻¹	Jul 2-3, 2006
Best day	849.6 pb ⁻¹	Aug 14, 2006
Best 7 days (0:00 to 24:00)	5.385 fb ⁻¹	Jul 27-Aug 3, 2006
Best week (Sun 0:00 to Sat 24:00)	5.111 fb ⁻¹	Jul 30-Aug 5, 2006
Peak HER current	1900 mA	Aug 15, 2006
Peak LER current	2995 mA	Oct 10, 2005
Best 30 days	19.315 fb ⁻¹	Jul 19 – Aug 17, 2006
Best month	17.036 fb^{-1}	July 2004
Total delivered	410 fb^{-1}	

Challenges of Run 5

- Two major vacuum problems developed in the month of December limiting the peak luminosity to about ~0.5 x 10³⁴/cm²/s:
 - Gap ring (RF seal) problem near LER RF cavity caused e⁺ beam instability
 - Higher Order Mode absorbing bellows caused vacuum bursts in IR
- The first problem was quickly identified (~ 2 weeks) and solved in late January.
- The second problem was thoroughly investigated, replacement parts manufactured, and repaired in late March with elapsed time of about three months.

Conclusion of Run 5

Run ended with a 'bang'

- Series of very successful machine studies through out the run contributed to improvements in performance and stability of the machine
- Aug 18 during machine studies, using special bunch pattern, studied high bunch charge beam-beam effects
 - Demonstrated record per bunch luminosities
 - Consistent with achieving L_{peak}~ 2 x 10³⁴ cm⁻² s⁻¹
- Overheating in cable near transverse feedback kicker resulted in small cable fire
 - Cause of cable heating understood and being fixed

PEP-II Upgrades

- Goal: Increase PEP-II luminosity by 60% by the end of run 6
- $(1.2 \rightarrow 2 \times 10^{34}/\text{cm}^2/\text{s})$ will come from:
 - Increasing each beam current by 40%.
 - Lowering β_v^* from 11 to 8.5 mm giving 20%.
 - Increasing the beam-beam parameters by 10%.
 - Keeping detector backgrounds at the predicted levels.
 - Maintaining (and improving) accelerator reliability.

Onward to the 1/ab phase 2006-2008

- Final Machine Upgrades
 - take the peak luminosity from 12x10³³ /cm²/s \rightarrow 20 x10³³ /cm²/s
- Final Detector Upgrades
 - Complete the upgrade of the Instrumented Flux Return (IFR)
 - replace RPC's with LST's in the remaining 4 sectors (2 sectors were done in 2002).
 - Expect to fully recover (the slowly deteriorating) muon and K_L identification capabilities of the detector.
 - Prepare for the expected higher data rate (and possibly higher background)
 - stay at its usual very high efficiency of data collection (~96% historical average).
 - Now studying the trigger and data flow system for possible bottlenecks and preparing for solutions

LST prep

Lower West sextant installed

LST Installation

Upper West sextant tooling and brass installation

Onward to the 1/ab Phase of BaBar 2006-2008

PEP II Integrated Luminosity (1/fb)

Summary

- There is an enormous amount of flavor physics still to come from BaBar in its "1/ab" phase
 - Precision knowledge of the charge weak sector of the SM & CKM parameters
 - With the possibility of revealing deviation from the SM
 - Measurements of CP violation and decay properties in penguin dominated decay modes
 - with the possibility of revealing New Physics effects.
- If we continue to see no deviation at these precisionsthe results will serve as major constraints on the flavor structure of New Physics- to be seen at LHC
- PEP II and BaBar are in preparation for the "1/ab" phase. Both upgrade efforts are proceeding well and on schedule.