

04 June 2010

Applications in Medicine

Past and Future

Paul M. DeLuca, Jr. Provost & Vice Chancellor for Academic Affairs UW-Madison

Societal Impact: Medical Imaging Digital Subtraction Angiography

Charles Mistretta Prof of Medical Physics Kidney transplant and a stent placement.

Societal Impact: Medical Imaging Osteoporosis and bone mineral densitometry

ACRU Report 81, 2009

Societal Impact: Medical Imaging MRI Flow Contrast Angiography

Imagers: ACR RSNA

Molecular imaging in oncology – targeting hallmarks of cancer

Hanahan, Cell, 100, (2000), 57

UW-IRAT

Acute myeloid leukemia (AML)

- Standard treatment of AML: induction chemotherapy for 7 days, bone marrow aspirate and biopsy at 2 wks, repeat chemotherapy if needed
- The results of the bone marrow biopsy are often difficult to interpret and the predictive power is poor
- Use imaging as a predictive biomarker to segregate patients into high and low risk groups

FLT PET response

Complete Responder

Resistant Disease

Complete Remission (residual disease, day 14)

day 5

(aplastic, day 14)

Timing of the scan does not matter

0

p < 0.001

Personalization of therapy

FDG

CuATSM

What to dose paint?

Personalization of therapy

When to dose paint?

Societal Impact: Medical Imaging Tomotherapy

Photos: http://www.psl.wisc.edu/projects/large/tomo

Microscopic Energy Deposition

Direct Damage to DNA

Genius Starts Early!

Radiological Use of Fast Protons Robert R. Wilson Research Laboratory of Physics, Harvard University Cambridge, Massachusetts (Radiology, 47 (1946) pp 487-491)

- It must have occurred to many people that the particles themselves now become of considerable therapeutic interest.
- ... specific ionization or dose is many times less where the proton enters the tissue than it is in the last centimeter ...
- These properties make it possible to irradiate intensely a strictly localized region...
- Thus the biological effects near the end of the range will be considerably enhanced due to greater specific ionization...
- It will be possible to treat a volume as small as 1 c.c. anywhere in the body and to give that volume several times the dose of any neighboring tissue.
- In treating large volumes ... accomplished by interposing a rotating wheel of variable thickness, corresponding to the tumor thickness, between the source and patient.
- Heavier nuclei, such as very energetic carbon atoms, may eventually become therapeutically practical.

Depth dose distribution of various radiation modalities

Spread-out Bragg peak

Adding together Bragg peaks from multiple beam energies with independent weights can generate a flat region at the tumor at the expense of increasing the entrance dose

Range Scattering with Penetration in Water

Lateral Scattering with Penetration in Water

Particle Range versus Particle Energy Scaled From Water

Dose distribution in micrometer scale sparsely ionizing photons

Local Dase (Gy x (um) -ray

densely ionizing particles

LLUMC Facility Layout

The Loma Linda University Medical Center Proton Treatment Center

Slide courtesy of B. Arjomandy, LLUMC

IBA Gantry at NPTC

NPTC Treatment Room

Superconducting Cyclotron for Paul Scherrer Institute (PSI), Villigen, Switzerland

Beam Transfer Line

HIT Heidelberg Ion-beam Therapy GSI Technology Siemens Tech Transfer

Dose Distribution Comparison

MEDULLOBLASTOMA

10

Slide courtesy of A. Smith, MGH

Comparison study

Relapsing Pituitary Adenoma

Dose distribution in transversal slice

Photons

Protons

PROVIDING NUCLEAR TECHNOLOGY FOR THE BETTERMENT OF HUMANITY

A Better Way to Produce ⁹⁹Mo (and Other Medical Isotopes)

SHINE Isotope Production System

May 14th, 2010-Dr. Gregory Piefer

- The Morgridge Institute for Research and Phoenix Nuclear Labs are developing a system to produce reactor grade medical isotopes without a traditional reactor
- System is capable of helping end the medical isotope crisis quickly and relatively inexpensively
- Technology has two key aspects
 - Primary neutrons created by high output D-T source
 - Neutrons enter aqueous LEU solution where they multiply subcritically and create medical isotopes
- Single device could produce nationally relevant quantities of ⁹⁹Mo and other medical isotopes (>40% ⁹⁹Mo)

- > Neutrons are made by reactions between deuterium and tritium atoms
 - Deuterium gas flows into ion source, is ionized by RF or microwaves
 - □ Simple DC accelerator pushes ions toward target chamber (300 keV)
 - □ Accelerated deuterons strike tritium gas in target chamber, creating neutrons
 - Proof of high efficiency and yield already demonstrated (> 2*10⁹ n/s per watt)
 - □ High energy neutrons allow for (n,2n) multiplication on beryllium
 - □ Only reaction products from this process are neutrons and ⁴He

SHINE Driver Specifications

- Physical
 - Consists of two ion injector / accelerator pairs discharging into a common target chamber
 - Structure held together with aluminum frame
 - Integrated beryllium multiplier ~ 1000 lbs
 - Total driver weight ~ 2000 lbs
 - Ion source, pumping power supplies, cooling systems fully integrated
 - High voltage delivered externally
- Operational
 - Deuteron / triton current: 100 mA (50 mA per injector)
 - Beam energy: 350 keV
 - Beam power: 35 kW
 - Neutron output: 5*10¹³ n/s (14.1 MeV)
 - Tritium inventory: 0.015 g (< 150 Ci)
 - Tritium consumption (per year): 0.007 g (~ 60 Ci)
 - Wall power (with pumping): 50 kW

SHINE Overview

- SHINE (Subcritical Hybrid Intense Neutron Emitter)
 - Consists of an aqueous pool of uranium nitrate or sulfate
 - Pool driven by 12 D-T drivers
 - Beryllium surrounding pool provides neutron reflection and multiplication
 - Isotopes made from fission of uranium in solution
 - Uranium concentration controlled to keep pool subcritical
 - Solution chamber partitioned so sections may be drained on different days
- Key Benefits
 - No criticality
 - No instability as demonstrated with all previous aqueous reactor systems
 - Inherent safety-needs to be driven to operate
 - Greatly reduced nuclear waste-no reactor needed
 - Utilizes low enriched uranium (19.5%)
 - Aqueous process improves chemical extraction efficiency
 - Simplified regulatory approval process

Specifications

- Physical
 - Size: 7m long by 3.5 m diameter
 - Weight: 20 tons
 - Materials: primarily Zircalloy, aluminum, beryllium
- Safety
 - Subcritical, criticality monitored by in-core neutron detectors
 - Large negative power coefficient caused by radiolysis
 - Neutron poisons to be added if criticality exceeds operational limits
 - Dump tank if reactivity exceeds safety thresholds with passive and active valves
- Key parameters
 - Fission power: ~ 250 kW
 - ⁹⁹Mo production rate: 2500 6-day kCi / wk
 - Driver neutron production: 6*10¹⁴ n/s @ 14.1 MeV
 - Driver power consumption: 600 kW
 - Multiplication factor from Be: 2-3
 - Maximum K_{eff}: ~ 0.95
 - Neutron flux: ~ 10^{13} n/cm²/s average flux in solution

Present Status

- PNL, in collaboration with the Morgridge Institutes for Research, and UW-Madison is seeking \$25 M DoE grant to assist with construction of SHINE production facility
- Several key partners secured or in negotiation
 - Los Alamos National Laboratory
 - Lawrence Berkeley National Laboratory
 - TechSource
 - MDS-Nordion
 - GE
 - Lantheus Medical Imaging
 - INVAP-Argentina
- Goal is to commercialize SHINE by Jan. 1, 2014, use revenues to expand into other applications

Keep still; very, very still!

