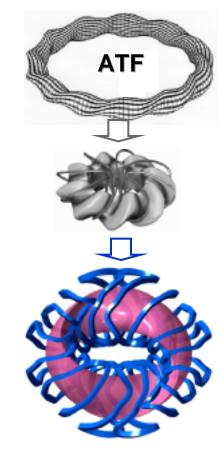
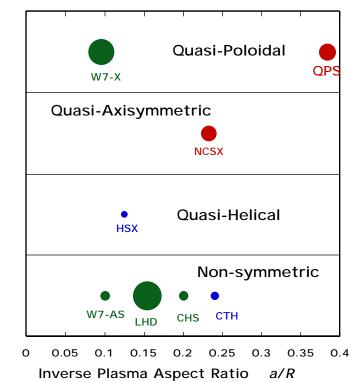

ORNL Perspective on the Compact Stellarator Program


Stan Milora ORNL

End view looking eastward

ORNL has a long-standing continuing commitment to stellarator research.


- Has developed and continues to evolve the design and analysis tools that serve as the world standard
 - DKES, VMEC, STELLOPT, COILOPT, PROCTR
- Designed, built and operated ATF
- Over the past 6 years ORNL has worked on development of a low-aspect-ratio stellarator that incorporates the bootstrap current in its optimization
 - ⇒ QPS—very low aspect ratio, excellent neoclassical confinement, good MHD properties, and a high-β reactor vision
- ORNL integrated into several elements of the compact stellarator PoP program
 - QPS development
 - leadership roles on NCSX
 - 3-D theory development
 - international collaboration

QPS pioneers an innovative direction in Compact Stellarator program—very low aspect ratio and quasi-poloidal symmetry.

Symmetry

- Physics not obtainable from very-high-R/a
 W 7-X or other experiments and theory
 - » strong toroidal coupling
 - » significant bootstrap current
 - » different neoclassical transport reduction mechanism
- Can study fundamental issues common to low-β and high-β quasi-poloidal
 configurations
 - scaling of the bootstrap current with β
 - reduction of neoclassical transport
 - reduction of H-mode power threshold
 - flux surface robustness as β increases due to reduced parallel bootstrap current
 - ballooning instability character and limits

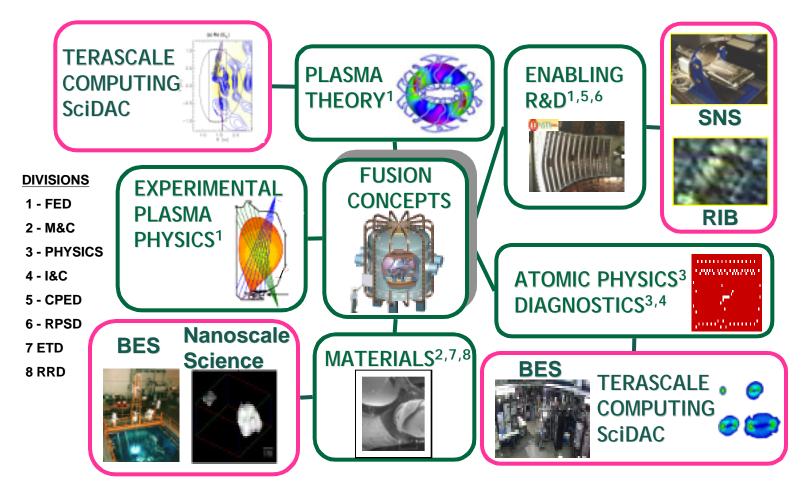
Radius of circles is proportional to average plasma radius

QPS Costs

- Construction cost is moderate
 - \$12M in 2001 dollars, \$14M as spent
 - Maximize work done by outside contractors/partners
 - » Discussions with University of Tennessee to reduce costs and broaden participation, train students
 - to complete construction in ~ 4 years requires an increase of ~ \$2M from present level in FY03 rising to a total annual budget of \$5M by FY06 (as-spent \$)

• QPS operating cost is \$5M/year including collaborators

- maximizing use of students and outside collaborators (universities, PPPL)
- part of this redirection of existing funding


QPS is needed now.

- To complete the integrated compact stellarator PoP
 program
- To have an impact on
 - FESAC's 10-year goal for assessment of the compact stellarator approach
 - the direction of the post-LHD and post-W 7-X world stellarator program
- Theory needs benchmarking at low aspect ratio for validation and improvement

QPS is important to ORNL.

- QPS strengthens other fusion activities at ORNL
 - confinement studies, 3-D theory, plasma technology development, advanced computing, materials, etc.
 - broadens ORNL support of university collaborations
 - educating new people for fusion research
 - international collaborations
- Broadens national participation in ORNL programs
 - ~1/2 the QPS program conducted by university collaborations and PPPL
 - also reduces cost of construction and operation of QPS

At ORNL fusion is integrated into the broader Science and Energy communities and leverages these huge capabilities.

Fusion is also an important element of ORNL's Energy portfolio.

 While QPS contributes strongly to our Science mission it is also a part of our Energy and Environmental Systems of the Future initiative

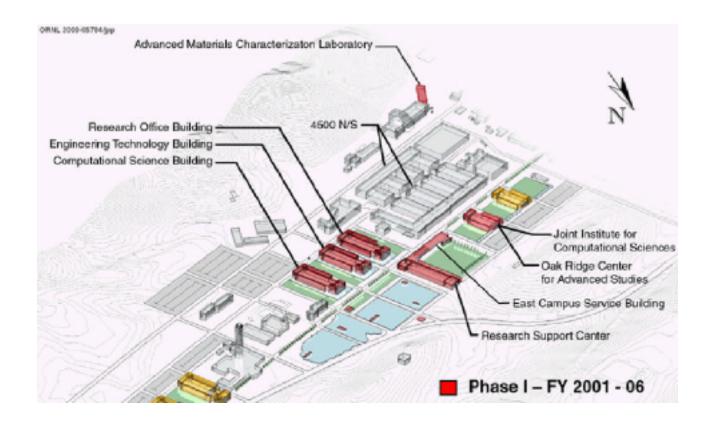
Building a National Energy Policy

Presented to the **Tennessee Valley Corridor Summit** Dr. William J. Madia Director Oak Ridge National Laboratory

May 30, 2001 Washington, DC

OAK RIDGE NA U.S. DEPARTMEN

Fusion is an attractive long-term energy option


- Creating the sun's power in a magnetic bottle could provide clean energy for thousands of years
- Fuel from 50 cups of seawater equals 2 tons of coal

UT-BATTELLE

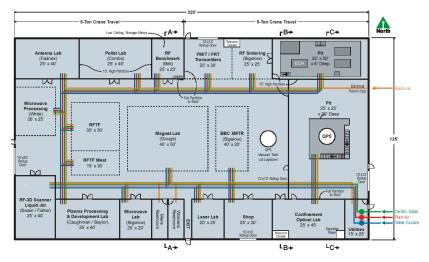
 Progress has been steady—power increased by 8 orders of magnitude and sustained plasma time increased by 100 fold

OAE BIDGE NATIONAL LABORATORY U. S. DIDARTMENT OF ENERGY

A new fusion home with QPS as it's centerpiece is part of ORNL's \$200M program to modernize research facilities.

+ SNS, Center for Nanophase Materials Science, Joint Institute for Neutron Sciences, Joint Institute for Biological Sciences

As part of the laboratory modernization effort FED will move from the NNSA Y-12 complex to the ORNL site.


• Experimental facilities are 2 mi. from main ORNL campus

The Laboratory intends to invest substantially in the future of Fusion at ORNL.

- 27,500 sq. ft multi-purpose research facility (65% Fusion)
- Infrastructure configured for the QPS requirements
 - all coil power supplies; ECH & ICRF heating; bus work; cooling water; etc.
- 60 office spaces in a new office complex in the main campus
- Additional offices at the QPS site

End view looking eastward

Summary

- QPS is an essential element of the compact stellarator program
- QPS extends toroidal confinement research in a new direction
- QPS is important to ORNL
- ORNL is important to the Fusion program