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Mission Statement: to build an AI-enabled inverse design approach for fundamental understanding and 
integrated material-manufacturing design of advanced polymer composites for improved performance 
and energy-efficient manufacturing, thereby enabling a smaller carbon footprint, lower structural weight, 
and lower cost.   
 
Despite the vast design space of composites, there are significant gaps between the performance, 
economic and environmental targets and current design and manufacturing approaches. Most egregious 
are the expensive, long development cycles and the sub-optimal design that waste resources and may 
adversely affect the environment and climate change. The fundamental cause of such gaps is the lack of 
detailed understanding of the influence of the material architecture, process methods, and parameters 
on material microstructure evolution and subsequently the end product’s physical, economic, and 
environmental performance1, which we refer to as the material-process-microstructure-performance 
(MP2) relationships. The current experimental or analytical material screening approach relies heavily on 
known material architectures and is a trial-and-error process which largely hinders the material design 
exploration and optimization capabilities. Such gaps motivate the discovery and construction of a physics-
informed, AI-based, inverse design platform that centers on multiscale physics-based models that can 
capture and predict the parameter space of specific manufacturing processes and material characteristics 
during fabrication. We envision such a platform that will enable both the discovery of new composites 
materials forms and relevant new manufacturing methodologies.  
 
The scientific goals of this cooperative research effort are: (1) to unravel the fundamental underpinnings 
of the MP2 relationship via constructing an uncertainty-aware multi-objective “Digital Life Cycle” (DLC) 
that represents a suite of seamlessly linked, experimentally converged, high-fidelity models embracing all 
stages of a composite component’s life cycle, linking perceived risk from energy consumption to carbon 
footprint;  (2) to leverage physics-informed AI models and build microservice-based cloud tools to enable 
inverse composites material architecture and manufacturing process design and in situ diagnosis and 
control; and (3) to inform and validate the DLC 
and AI models and implement new material 
and process designs by exploiting innovative 
material engineering, characterization, and 
testing methods. The scientific goals will be 
achieved via three research thrusts as shown in 
the three circles in Fig. 1. The green circle is the 
DLC representing a suite of seamlessly linked, 
high-fidelity multiscale models for simulating 
all stages of a polymer composite’s life cycle, 
which also integrates uncertainty 
quantification and energy, environment, 
economy (E3) impact evaluation. The DLC will 
enable the generation of a large quantity of 
high-fidelity data for the training of AI models. 
Equipped with the DLC generated data, in the 
AI modeling and inverse design research thrust 

Figure 1. Project overview: iterative loop among the DLC, 
AI modeling and Experiments research thrusts, then AI 
models enable inverse design workflow. 



(blue circle), we will develop new AI models, including physical informed neural networks (PINN) and 
multiscale deep neural operators (DeepONet), to efficiently map the composite materials’ architecture 
and the manufacturing process to composite components’ performance. Next, we will develop a 
conditional VAE neural network (MaterialVAE) for material inverse design and a conditional VAEGAN 
neural network (ProcessGAN) for manufacturing process design. Third, we will develop an uncertainty 
quantification neural network (UQNN) for in situ manufacturing diagnosis and control. By utilizing the 
experimental facility and capabilities at the Clemson Composites Center, the Center for Manufacturing 
Innovation at the University of Florida, the Pacific Northwest National Laboratory (PNNL) and other 
relevant BES facilities and infrastructure, we will conduct material characterization and testing of 
mechanical, physical, rheological, and morphological properties at nano-, micro-, and macroscales to 
inform and validate both DLC and AI models and simulations (orange circle of Fig. 1). We will also 
implement new/hybrid processes that combine existing or new scalable processing routes to create 
tailored composite micro and macro structures. Finally, the inverse design is performed by the generative 
AI models. For given performance requirements, the material inverse design is first carried out using 
MaterialVAE to achieve the target material properties. For each material design candidate, and with the 
quality and E3 impact requirements, the manufacturing process inverse design is performed using 
ProcessGAN. Thus, the optimal composite material and its manufacturing process is obtained as a holistic 
solution.  
 
Through the proposed research, the AIM for Composites EFRC aims to address the following challenges: 
1. The models revealing the MP2 relationship need to be able to capture the material behavior at multiple 

length scales (impurities, complex compositions), the effects of manufacturing process (phase changes, 
non-equilibrium characteristics, E3 impact), and both aleatory and epistemic uncertainties. 

2. The possible material architectures and process conditions lead to a vast material and process design 
space with unknown boundary and few data points, so it is challenging to determine the data sampling 
strategy and the volume of data to be generated for training ML models.  

3. Integration of experimental characterization and testing with model development and validation.  
4. How the physical principles will be preserved in ML models for them to represent nonlinear and 

transient functional properties.  
5. Efficient and accurate models that enable in-situ diagnosis and in-process decision making.  
6. E3 impact together with material property, manufacturing quality, and structural performance makes 

the inverse design multiscale, multi-objective and multidisciplinary.  
7. Data fusion and flow among the DLC and ML models, experiments, and the inverse design steps. 
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