JCAP RENEWAL PROJECT

HARRY A. ATWATER

JOINT CENTER FOR ARTIFICIAL PHOTOSYNTHESIS

BESAC MEETING

June 10th, 2016

THE JCAP TEAM

The Institutional Partners have successfully worked together since 2010 to reach JCAP's current goals and will continue toward JCAP's new goals

KEY PERSONNEL

JCAP DIRECTOR

LEAD PRINCIPAL INVESTIGATOR FULL MANAGEMENT AUTHORITY – RESEARCH AND RESOURCE ALLOCATION 80% ANNUAL TIME COMMITMENT

JCAP DEPUTY DIRECTORS

PROGRAM AND RESEARCH MANAGEMENT STRATEGIC PLANNING, BUDGET AND SCHEDULE FORMULATIONS PERFORMANCE ASSESSMENTS COMMUNICATIONS FOSTERING BENEFICIAL COLLABORATIONS PROGRAM REPRESENTATION SITE-SPECIFIC MANAGEMENT AND OPERATIONAL RESPONSIBILITIES 75-95% ANNUAL TIME COMMITMENT

RESEARCH THRUST COORDINATORS COORDINATION OF RESEARCH EFFORT 10-100 % ANNUAL TIME COMMITMENT

DOE USER FACILITIES GROUP WORKS WITH JCAP RESEARCHERS AND

COORDINATES WORK AT THE USER FACILITIES

GOVERNANCE BOARD

PROVIDES OVERSIGHT IN THE MATTERS OF BUDGETS, RESEARCH STRATEGIES, PERSONNEL, NEW PARTNERING ARRANGEMENTS, AND INFRASTRUCTURE

SCIENTIFIC AND STRATEGIC ADVISORY BOARDS

PROVIDE THE HUB WITH BROAD PERSPECTIVE ON JCAP'S R&D PROGRAM ACCOMPLISHMENTS, DIRECTION, AND STRATEGY ADVISE ON ENGAGEMENT WITH OTHER RESEARCH ORGANIZATIONS AND INDUSTRIAL PARTNERS

DIRECTOR'S ADVISORY COMMITTEE

HELPS THE DIRECTOR IN MAKING SIGNIFICANT STRATEGIC DECISIONS IMPACTING OPERATIONS OF THE HUB

PI COUNCIL

IS CHARGED WITH ADVISING THE DIRECTOR ON RESEARCH SCOPE AND SCIENTIFIC STRATEGIES, AND ASSISTING WITH INTEGRATION OF JCAP'S RESEARCH WITH OTHER **R&D** PROGRAMS

JCAP RESEARCH TEAM

32 Faculty and Senior Scientist **Principal Investigators** Multi-Institutional GB

1 Nobel Laureate

12 National Academies of Science and Engineering Members

1 National Medal of Science

8 American Academy of Arts and **Sciences Members**

JCAP MAJOR RESEARCH FACILITY INVESTMENTS

Jorgensen Laboratory @Caltech Support: DOE/Caltech/Resnick Institute

JCAP PARTNERSHIPS AND CAPABILITIES

FOCUS IN FIRST PHASE OF JCAP 2010-2015

JCAP's Mission is to demonstrate a scalably manufacturable solar-fuels generator using Earth-abundant elements that, with no wires, robustly produces fuel from the Sun ten times more efficiently than (current) crops.

"It is time to build an actual artificial photosynthetic system, to learn what works and what does not work, and thereby set the stage for making it work better" Melvin Calvin (1961 Nobel Laureate)

AN INTEGRATED APPROACH TO ARTIFICIAL PHOTOSYNTHESIS

OXYGEN FORMING REACTION

```
Oxygen evolution reaction (OER)

H_2O \longrightarrow \frac{1}{2}O_2(g) + 2H^+ + 2e^-
```

FUEL FORMING REACTIONSHydrogen evolution reaction (HER) $2H^+ + 2e^- \longrightarrow H_2(g)$ $2H^+ + 2e^- \longrightarrow H_2(g)$ CO_2 reduction reaction (CO2RR) $CO_2 + H_2O \longrightarrow HCOOH + \frac{1}{2}O_2$ $CO_2 + H_2O \longrightarrow HCHO + O_2$ $CO_2 + 2H_2O \longrightarrow CH_3OH + \frac{3}{2}O_2$ $CO_2 + 2H_2O \longrightarrow CH_4 + 2O_2$

ACCOMPLISHMENTS

PROTECTION SCHEMES FOR OPERATION AT EXTREME PH

Passive corrosion protection, catalytically active surface protection:

-- Optimized potentials and long lifetimes

STABLE OXIDE-BASED PHOTOANODES

STABLE OXIDE-BASED PHOTOANODES

Scientific Achievement

Computation, synthesis, and spectroscopy are used to identify and study the earthabundant Cu and Mn vanadates as a highly promising light absorbers for photocatalytic water splitting.

Significance and Impact

The detailed understanding of β -Mn₂V₂O₇ reveals that it is a unique metal oxide semiconductor due to its desirable band gap and near-perfect band alignment to the standard potentials for water splitting. The additional discovery of 4 CuO-V₂O₅ phases with band gap below 2 eV marks a vast expansion of the known photoelectrocatalyst for efficient solar fuel generation.

Materials

5

COVERY

Theory-Experiment feedback loop

Research Details

- A density functional theory (DFT) was used to understand the structural, electronic, and magnetic properties of Mn and Cu vanadates.
- The optical and photoelectrochemical properties of these phases were mapped using combinatorial chemistry and high throughput experimentation.
- Photoelectrochemical characterization revealed excellent stability and opportunities for improving the photoelectrocatalytic activity to enable efficient photo-driven water splitting.

Structural motifs and electronic structure of CuO-V₂O₅ phases²

of 8-Mn₂V₂O₇¹

MATERIALS MEASUREMENT AND MECHANISMS

COMPREHENSIVE CATALYST BENCHMARKING 1.000 10.00 Roughness

A PORTFOLIO OF STABLE HIGH EFFICIENCY WATER-SPLITTING PROTOTYPES

Demonstrations of efficient water splitting devices using III-V semiconductor stacks and membranes for full product separation

STATE OF THE ART FOR PEC HYDROGEN GENERATION

INTEGRATED SOLAR FUE 5 G **ENERATORS**

FUELS FROM SUNLIGHT: A GRAND CHALLENGE FOR CATALYSIS

"Currently, no commercially available processes exist for the conversion of carbon dioxide to fuels and chemicals."

"The major obstacle preventing efficient conversion of carbon dioxide into energy-bearing products is the lack of catalysts that can readily couple an abundant energy source (e.g., electricity from solar or direct solar radiation) with inexpensive reducing agents (e.g., hydrogen derived from water or methane) to achieve rapid and selective cleavage of C–O bonds in carbon dioxide and formation of C–H bonds in the product."

"All known electrocatalysts or photocatalysts showing activity for carbon dioxide conversion to simple energy-storage products, such as carbon monoxide or formic acid, are inefficient and/or require use of sacrificial reducing agents."

"Opportunities exist for discovering and developing such catalysts with the goal of achieving higher selectivity and efficiency. At present, only laboratoryscale proof-of-concept systems produce carbon monoxide and formic acid with reasonable electron conversion efficiencies, but still at high overpotentials (greater than 0.6V)."

JCAP'S MISSION IN RENEWAL

There is no currently known catalyst, whether electrochemical or photoelectrochemical, that can reduce carbon dioxide with high efficiency and selectivity. Controlled catalysis is the grand challenge at the heart of solar-fuels generation from carbon dioxide.

In its five-year renewal project, JCAP will create the scientific foundation for a scalable technology that converts carbon dioxide into renewable transportation fuels, under mild conditions, with only solar added energy.

JCAP RENEWAL 5 YEAR GOALS: LEVEL ONE MILESTONES

Catalytic Mechanisms, Materials Discovery and Testbed Development

- Discovery and understanding of highly selective catalytic mechanisms for carbon dioxide reduction and oxygen evolution under mild conditions of temperature and pressure, and with input partial pressures of carbon dioxide in air between ambient atmospheric levels of 400 ppm and 1 atm. These advances will inform the design of overall solar-energy-to-fuels components for key processes including light capture, energy transfer, electron transport and charge separation.
- Accelerated discovery of electrocatalytic and photocatalytic materials and useful light-absorber photoelectrodes, followed by integration. This is required to design and construct components for test-bed prototypes that demonstrate selective, efficient CO₂ reduction into hydrocarbon fuels at full solar flux.
- Demonstration, in JCAP test-bed prototypes, of artificial photosynthetic carbon dioxide reduction components and oxygen evolution components that exceed natural photosynthesis in efficiency and rival it in selectivity. Results of these demonstrations will be used to determine the practicality of prototype solar-fuels systems.

JCAP'S RESEARCH THRUSTS

STRATEGY FOR OPERATING THE HUB

Accelerate discovery in a high-risk, high-reward R&D program

- 1. Year 1: H₂ PEC
- Capitalize on JCAP-1 advances in photoelectrode & catalyst development, integration and modeling to realize high efficiency water splitting prototypes incorporating these advances
- 2. Years 1 and 2: Selective CO₂R Components Divergent:
 - Broadly-based discovery-oriented research effort
 - Significantly increased role of theory
- 3. Years 3-5: Selective CO₂R Components Convergent:
 - Integration of JCAP-discovered materials into photoelectrodes
 - Evaluation of photoelectrodes in testbeds

Divergent:

Feedback from integration and testbeds to next phase of discovery science effort

2010-2015 JCAP ACCOMPLISHMENTS CREATE LEVERAGE FOR RENEWAL PROJECT

JCAP Accomplishment/Capability Developed in 1 st 5-Year Project	Relevance to CO ₂ Reduction	Renewal Project R&D Thrust
 Protective coatings for photoelectrodes 	Ability to protect/stabilize semiconductor photoanodes enables efficient solar-driven production of protons and electrons required to produce fuels from CO ₂	2 and 3
 High-throughput materials discovery 	Distinctive integrated theory/ experimental capability to discover, synthesize and screen new electrocatalysts, photocatalysts and photoelectrode materials	1 and 2
New electrocatalysts with benchmarked performance	Discovered water oxidation and CO_2 reduction catalysts; quantitatively benchmarked these for activity, selectivity and stability	1 and 2
 Operando and <i>in situ</i> characterization of materials and related theory 	Connection of performance data to underlying physical and chemical mechanisms leading to knowledge that informs new materials design	1, 2 and 3
Separator membrane synthesis and properties	Materials and design principles for membrane separators in water-splitting also applicable to CO ₂ reduction	4
Multiphysics modeling and simulation tools	Modeling capablities and tools allow system-level requirements for solar-driven CO ₂ reduction to be determined, leading to development of credible prototypes	4
 Robust prototype designs and fabrication experience 	Experience gained from building and testing water-splitting prototypes facilitates development of testbed prototypes for CO ₂ reduction	4
 Fully integrated prototype with unassisted water splitting 	Ability to integrate discovered semiconductors, catalysts, and membranes into functional architectures necessary for full CO ₂ reduction prototypes	1, 2, 3 and 4

JCAP'S LOCATION ON THE R&D LANDSCAPE

Secretary of Energy Advisory Board Task Force Report to Support the Evaluation of New Funding Constructs for Energy R&D in the DOE, March 28, 2014

Relative scale of emissions and potential uses for CO_2

GtC = 1 billion metric tons of carbon equivalent, i.e. 1Gt MeOH = 12.01/(12.01+16.00+4*1.01) Gt = 0.37 GtC.

¹ Assuming cement is composed of CaCO3, and the aggregate is composed of 50% CaCO3 by mass - ² Assuming a steel substitute that is similar in composition to carbon fiber, i.e. 90% C by mass. ³ Assuming cement is composed of CaCO3 - ⁴ Estimated feasible scale-up rates by 2050, excluding geoengineering approaches. Shaded bars indicate the upper range of estimates.

COSTS OF CARBON IN DIFFERENT FORMS

JCAP FUEL TARGETS BEYOND WATER SPLITTING

JCAP's desired fuel products are liquid or gaseous hydrocarbons or alcohols, defined by a heating value exceeding that for carbon monoxide

	SOLAR DRIVEN CO PROCESS EFI	NVERSION FICIENCY	TARGET PRODUCTS/ HEATING VALUE (MJ/kG)	USE CHALLENGES
Focus of JCAP-II	 CO₂ reduction >5% Needed scientific breakthroughs Stable and solar efficient semiconductors Active and selective catalysts 		Gaseous hydrocarbons • Methane (54) • Ethane (50) Alcohols	Separation from O ₂ Compression Separation
			Methanol (20) from water Ethanol (29)	from water
	 Materials integration and robust prototype designs 	Liquid hydrocarbons • Butane (46)	• None: most widely used transportation fuel	
-			Carbon monoxide (10)	• Economic conversion into transportation fuel
	• Water splitting	>19%	Hydrogen (142)	• Storage and transportation
	 Natural photosynthesis 	<1%	Sugars + (15) Cellulose	 Food vs fuel Hydrogenation
		JCAP produc	t goal: "Methanol or better	

ROUTES TO FUELS FROM CO₂: COMPARING E-CHEM TO THERMOCHEMICAL PATHWAYS

Two principal routes to reduce CO_2 to fuels:

- 1. <u>Direct reduction of CO₂ to fuel or chemicals (eg. CH₄, CH₃OH, H₂C=CH₂, etc.)</u>
- 2. <u>Thermochemical synthesis of fuel from intermediate</u> reduced species (H₂ or CO). Three possible reactions (illustrated for methanol synthesis) :

(1) $3H_2(g) + CO_2(g) \rightarrow CH_3OH(I) + H_2O(I)$ (2) $2H_2(g) + CO(g) \rightarrow CH_3OH(I)$ (3) $3CO(g) + 2H_2O(I) \rightarrow CH_3OH(I) + 2CO_2(g)$

These reactant mixtures are equivalent, because:

H₂ and CO are equivalent as energy carriers

$$H_2O \rightarrow H_2 + \frac{1}{2}O_2 \quad \Delta H^0_{298} = 286 \text{ kJ/mol.}$$

 $CO_2 \rightarrow CO + \frac{1}{2}O_2 \quad \Delta H^0_{298} = 283 \text{ kJ/mol.}$

- No energetic advantage to producing CO instead of H₂ for subsequent conversion to liquid fuel.
- Chemical reaction and toxicity reasons to prefer H₂ over CO generation.

CENTER FOR

CHEMICAL SYNTHESES FROM SYNGAS AND METHANOL

- Many chemical conversions from syngas to products, including gasoline via Fishcer-Tropsch
- Many chemical conversions from methanol to products, including gasoline
- Methanol is an achievable product from CO₂R PEC

for biomas-derived syngas, National Renewable Energy Laboratory, NREL/TP-510-

34929, December, 2003.

SOLAR-TO-FUEL ENERGY COMPARISON

- Conversion of PEC-H₂ (or CO) to a liquid fuel requires additional steps, reducing the Solar Energy to Fuel Energy conversion efficiency.
- A CO₂R PEC-CH₃OH generator will produce equivalent fuel energy operating at only 60% of the efficiency of a PEC-H₂ generator that requires an additional conversion step to produce CH₃OH.

Fuel	PEC-H ₂ efficiency	Conversion efficiency	Solar to fuel efficiency
H ₂ (g)	10%	NA	10%
CH ₃ OH (from H ₂ + CO ₂)		60%	6%
Gasoline from CH ₃ OH (MTG)		95%	5.7%
Low Temp F-T (from H ₂ + CO ₂)		60%	6%

POSSIBLE PATHWAYS FOR CO₂ REDUCTION CATALYSIS

Koper, J Phys Chem Lett., 6, 4073–4082 (2015).

CENTER FOR

Scaling relationships for CO_2 intermediates on CU

Adsorption energies of the key bound intermediates on fcc Cu (211)

Adsorption energies of adsorbates binding through oxygen

Overcoming scaling relationships for CO_2 intermediates on CU

JCAP MISSION AND STRATEGY

CENTER FOR

EPITAXIALLY ORIENTED CU SURFACES

lmages by Dr. Karen Chan

SELECTIVITY OF EPITAXIALLY ORIENTED CU SURFACES

Step sites guide selectivity towards more oxygenates

OECSTM: CU RECONSTRUCTION AT CO₂R CONDITIONS (-0.9 V/0.1 M KOH)

Y.-G. KIM, J. H. BARICUATRO, A. JAVIER AND M. P. SORIAGA

REGULATING CO-REDUCTION SELECTIVITY BY CONTROL OF SURFACE STRUCTURE

Y.-G. KIM, J. H. BARICUATRO, A. JAVIER AND M. P. SORIAGA

C2H4OH

SIMULATION OF C-C BOND FORMATION DURING CO₂R OVER CU

Scientific Achievement

Simulated the effects of applied potential on the rate of C-C bond formation during the electrochemical reduction of CO_2 .

Significance and Impact

Developed a theoretical model for predicting the rate coefficients involved in the reduction of CO_2 , which takes into account the effects of the electrolyte and the applied field. The model can be used to simulate the effects of catalyst composition, electrolyte composition, and applied field on the kinetics of CO_2 reduction.

Research Details

DFT/RPBE/APW was used to calculate the free energy of activation for all elementary steps. The space charge field was determined by solving the linearized Poisson-Boltzmann equation. Rate coefficients determined theoretically were used in a microkinetic model to determine the rate of C-C bond formation vs potential

Predicted (blue) and measured rate of C_2H_4 formation for pH = 7 and pH = 13

J. Goodpaster, M. Head-Gordon, and A. T. Bell, J. Phys. Chem. Lett., 7, 1471-1477, 2016.

BARRIERS FOR REDUCTION OF CO/CU(100), WITH EXPLICIT SOLVENT AT PH 0

Scientific Achievement: Explicit solvent QM Metadynamics simulation of electrochemical process. Predict potential for CH_4 product 0.55 eV: exp't = 0.56 eV.

• Can use QM to calculate accurate free energy barrier at operating temperature. Thus can use theory to predict accurate barriers for new electrocatalyst.

Significance and Impact : explicit solvent proton transfer transition state: Grotthuss process with 4 additional H₂O

Cheng, Xiao, Goddard; J Phys. Chem. Lett.vol 6 pp4767-4773 (Dec. 15, 2015)

IDENTIFICATION OF ELECTROCATALYSTS FOR CO_2RR to H_2COO

Scientific Achievement

Identified tandem, bimetallic catalysts for the preferential formation of H_2COO over H_2 .

Significance and Impact

Selective reduction of CO_2 to H_2COO can be achieved by embedding metal atoms that favor CORR over HER in a host metal that favors CO_2 reduction to CO. The CORR catalyst must bind *CHO (or *COH) more tightly than *H

Research Details

DFT/RPBE/APW was used to calculate the free energy of activation for all elementary steps in CO2 reduction to CO on Au(111) or Ag(111) surfaces and the reduction of CO to H2CO vs H2 on Cu, Ni, Pd, Pt, Co, Rh, and Ir atoms embedded in the host metal surface.

M.-J. Cheng, A.T. Bell, and M. Head-Gordon, J. Phys. Chem. C, in preparation.

ELECTROCHEMICAL REDUCTION OF CO₂ SELECTIVELY TO METHANOL

Discovery of Near-Surface Alloy for the Reduction of CO₂ *Exclusively* to CH₃OH

A theoretical prediction: a near-surface alloy (NSA) of a monolayer of Au on bulk W was empirically found to generate CH_3OH to the *exclusion* of other hydrocarbons and alcohols.

Approach

- Combined density-functional theory and adsorptionenergy descriptors ΔG°_{CO} , ΔG°_{H} and ΔG°_{OH} predicted a Au-W-Au NSA that would be CH₃OH-product-selective.
- Overlayer NSA films of (0.5 to 3 ML) Au on W were prepared by controlled galvanostatic deposition.

Back, at al,. "Selective CO_2 Electroreduction to Methanol." ACS Catal. 2015, 5, 965.

Products from CO_2 reduction at -1.2 V(RHE) in 0.1 M KHCO₃ were analyzed by Differential Electrochemical Mass Spectrometry (DEMS). Only CH₃OH was found.

STRATEGIES FO \mathcal{P} SLEECTIVE J REDUCTION REACTIONS

ELECTROCHEMICAL REDUCTION OF CO₂ SELECTIVELY TO METHANOL

Constant-potential DEMS of CO₂ Reduction on Au-W Near-Surface Alloy

Theoretical Prognosis	Experimental Result	F
CH ₃ OH-Selective	CH ₃ OH-Selective	F
High Activity	Not yet optimized	ר
Low Overvoltage	Not yet optimized	0
HER Suppression	Not yet optimized	H

Future Work:

Prepare NSA as prescribed by theory Try different substrates with the same NSA Obtain complete and quantitative product analysis Have theory scrutinized by other theory groups

A. Javier, J. H. Baricuatro, Y.-G. Kim and M. P. Soriaga^{*}. "Au-on-W Near-Surface Alloy as a CH_3OH -Product-Selective Electrocatalyst for CO_2 Reduction: Empirical (DEMS) Confirmation of a Computational (DFT) Prediction." *Electrocatalysis*. In press. (2015).

Hansen, Shi, Lausche, Peterson, Nørskov, Phys. Chem Chem Phys. (2016)

Torelli, Francis, Crompton, Javier, Thompson, Brunschwig, Soriaga, Lewis, ACS Catal., DOI: 10.1021/ acscatal.5b02888

BREAKING SCALING RELATIONSHIPS WITH BIFUNCTIONAL CATALYSTS

CO₂ REDUCTION: SELECTED ACHIEVEMENTS TO DATE

- A strategy for selective CO₂ reduction: multifunctional cathode that combines multiple active sites, functional coatings, nanoscale confining volumes
- Cu nanoscale surface observation reveals role of facetting in selectivity
- Experimental catalysts exhibiting elements of selectivity: Au/W and NiGa
- Approaches for breaking scale between CO binding and other intermediates
- Theoretical methods for DFT at applied potential: barriers \rightarrow microkinetic models
- Theoretical methods that incorporate explicit water
- Experimental investigation of electrolyte effects on solvation and selectivity

SCIENTIFIC OUTPUTS AND DELIVERABLES

Deliverables for JCAP milestones include:

SCIENTIFIC PEER-REVIEWED PUBLICATIONS OF JCAP WORK ON DISCOVERY OF MATERIALS, MECHANISMS, AND UNDERSTANDING OF INTERFACES AND TEST-BEDS 300+ cumulative publications (total): 113 publications in 2015

- ~10 papers/month (2016 calendar year)
- 31% in journals with impact factor > 10

IP DISCLOSURES 38 provisional applications 18 nonprovisional applications 9 PCT applications

CONFERENCE PROCEEDINGS, TECHNICAL REPORTS, CONFERENCE PRESENTATIONS ACS, MRS, ECS, GC, etc. ~ 30 presentations and invited talks/guarter

BOOK CHAPTERS AND REVIEW ARTICLES 14 review articles 5 book chapters

DEVELOPED CAPABILITIES (E.G., HARDWARE, SOFTWARE, FABRICATION PROCESSES) high throughput experimentation and data electrochemical cells test-bed modules and testing

WORKFORCE DEVELOPMENT AND TRAINING: ACADEMIA AND NATIONAL LABS

JCAP has more than 20 alumni who are tenure track faculty in the US, Asian, and European Universities

Y. Ping UC Santa Cruz

C. McCrory U. Michigan

S. Haussener

EPFL

M. H. Lee

Kyung Hee U.

J. Velazquez

UC Davis

M. McDowell Georg. Tech.

J. Goodpaster J. Panetier U. Minnesota

EPFL

N. Lynd U. Texas, Austin

Fl. State U.

J. Mendoza-Cortes O. Luca

M.-J. Cheng

Tsinghua U.

K. Perrine Michigan Tech.

U. Colorado

R. Sundararaman

RPI

J. Sanabria U. Costa Rica

J. Yang UC Irvine

S. Chen E. Ch. Normal U.

G. Sudre U. Claude Bernard

Many JCAP Ph.D. alumni continue with postdoctoral appointments at leading national and international universities and research staff appointments at the National Labs.

Yale

Y. Li

Shanghai J. T. U.

R. Buonsanti

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

