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Development and Application of AI  
Critical For All Government Agencies
• Executive Order on AI

Policy Statement:  Artificial Intelligence (AI) 
promises to drive growth of the United 
States economy, enhance our economic and 
national security, and improve our quality of 
life. 

… leadership requires a concerted effort to 
promote advancements in technology and 
innovation, while protecting American 
technology, economic and national security, 
civil liberties, privacy, and American values 
and enhancing international and industry 
collaboration with foreign partners and allies. 

• Supported by multiple agency strategies and programs
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DOE builds on historical missions and touches all areas
• The U.S. AI strategy includes

1. Long-term investment in research
2. Effective methods for human-AI collaboration
3. Address ethical, legal and social implications
4. Ensure the safety and security of AI Systems
5. Develop shared datasets and environments
6. Standards and benchmarks
7. Understand the AI workforce
8. Expand public-private partnerships

• DOE will play a key role in AI for science and 
engineering
• AI Technology office
• Mission-driven development and application of 

AI/ML, i.e., innovation in Science, Energy and 
National security

• Build on its HPC mission
• Large-scale scientific data for research
• Talent development
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DOE research challenges touch all areas of AI
Data

• Experimental design

• Data curation and 
validation

• Compressed 
sensing

• Facilities operation 
and control

Learning

• Physics informed

• Reinforcement 
learning

• Adversarial 
networks

• Representation 
learning and multi-
modal data

• “Foundational 
math” of learning

Scalability

• Algorithms, 
complexity and 
convergence

• Levels of 
parallelization

• Mixed precision 
arithmetic

• Communication

• Implementations 
on accelerated-
node hardware

Assurance

• Uncertainty 
quantification

• Explainability and 
interpretability

• Validation and 
verification

• Causal inference

Workflow

• Edge computing 

• Compression

• Online learning

• Federated learning

• Infrastructure

• Augmented 
intelligence

• Human-computer 
interface

Agent Environment

States

Actions

Model-based 
Approximations

Partial 
Information

Rewards
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How can AI help?

Data 
Analytics

Classification

Regression

Clustering

Dimensionality  
Reduction

Inverse
problems

Model 
reconstruction

Parameter 
estimation

Denoising

Surrogate
models

Approximate 
expensive 

simulations

Approximate 
experiments

Fill in missing 
models in 

simulations

●Design
and control

Optimize design of 
experiments

Control 
instruments

Navigate state 
spaces

Learn from sparse 
rewards
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ASCR’s Role in AI
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Things we can do in Science with AI now
Researchers at Argonne National Laboratory are working on optimization models that use 
machine learning, a form of artificial intelligence, to simulate the electric system and the 
severity of various problems. In a region with 1,000 electric power assets, an outage of just 
three assets can produce nearly a billion scenarios of potential failure.  Making models even 
more robust will give grid operators stronger guidance that can inform more reliable planning 
and operations for contingent events such as storms, equipment malfunctions and big 
fluctuations in renewable energy generation. https://www.anl.gov/article/artificial-
intelligence-can-make-the-us-electric-grid-smarter

Depiction of fusion 
research on a 
doughnut-shaped 
tokamak enhanced 
by artificial 
intelligence. (Eliot 
Feibush/PPPL and 
Julian Kates-
Harbeck/Harvard 
University)

A team of scientists from Princeton Plasma Physics Laboratory (PPPL) and Princeton 
University is working with a Harvard graduate student to applying deep learning  to 
forecast sudden disruptions that can halt fusion reactions and damage the 
doughnut-shaped tokamaks, like ITER, that house the reactions. 
https://www.pppl.gov/news/2019/04/artificial-intelligence-accelerates-efforts-
develop-clean-virtually-limitless-fusion

Researchers at the U.S.  Argonne National Laboratory and the University of 
Cambridge in England have developed a novel "design to device" approach to 
identify promising materials for dye-sensitized solar cells (DSSCs) that can be 
manufactured with low-cost, scalable techniques.  Using a combination of 
simulation, data mining and machine learning the team was able to pinpoint five 
high-performing, low-cost dye materials from a pool of nearly 10,000 candidates for 
fabrication and device testing. 
https://www.sciencedaily.com/releases/2019/03/190305092837.htm
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Pre Exascale: Summit Excels Across Simulation, Analytics, AI 

• Data analytics – CoMet bioinformatics application for comparative genomics. Used to find sets of genes that are related to 
a trait or disease in a population. Exploits cuBLAS and Volta tensor cores to solve this problem 5 orders of magnitude 
faster than previous state-of-art code. 

• Has achieved 2.3 ExaOps mixed precision (FP16-FP32) on Summit

• Deep Learning – global climate simulations use a half-precision version of the DeepLabv3+ neural network to learn to 
detecting extreme weather patterns in the output

• Has achieved a sustained throughput of 1.0 ExaOps (FP16) on Summit

• Nonlinear dynamic low-order unstructured finite-element solver accelerated using mixed precision (FP16 thru FP64) and AI 
generated preconditioner. Answer in FP64

• Has achieved 25.3 fold speedup on Japan earthquake – city structures simulation

• Half-dozen Early Science codes are reporting >25x speedup on Summit vs Titan

Artificial

intelligence

High-

performance 

data 

analytics

Advanced 

simulations



Department of Energy (DOE) Roadmap to Exascale Systems

ORNL
Cray/AMD/NVIDIA

LLNL
IBM/NVIDIA

ANL
IBM BG/Q

LBNL
HPE(Cray)/AMD/NVIDIA

LANL/SNL
TBD

ANL
Intel/HPE(Cray)

ORNL
HPE(Cray)/AMD/AMD

LLNL
Cray/AMD/AMD

LANL/SNL
Cray/Intel  Xeon/KNL

2012 2016 2018 2020 2021-2023

ORNL
IBM/NVIDIA

LLNL
IBM BG/Q

Sequoia (10)

Cori (12)

Trinity (6)

Theta (24)Mira (21)

Titan (9) Summit (1)

NERSC-9
Perlmutter

Aurora

ANL
Cray/Intel KNL

LBNL
Cray/Intel  Xeon/KNL

First U.S. Exascale Systems

Sierra (2)
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SciML Priority Research Needs January 2018

SciML
Foundation
al Research 

Themes

Domain-aware – leverages and respects scientific domain knowledge –
physics principles and symmetries, constraints, uncertainties and structure-
exploiting models

Interpretable-- explainable and understandable results-- model selection, 
exploiting structure in high-dimensional data, use of uncertainty 
quantification with machine learning. 

Robust – stable, well-posed & reliable formulations – probabilistic modeling 
in ML, quantifying well-posedness, reliable hyperparameter estimation

SciML
Capabilities

Data-Intensive – scientific inference and data analysis – ML methods for 
multimodal data, in situ data analysis and to optimally guide data acquisition

Adaptive Simulations – ML hybrid algorithms and models for better scientific 
computing tools– ML-enabled adaptive algorithms, parameter tuning and 
multiscale surrogate models

Controling Complex Systems – automated decision support, adaptivity, 
resilience, control – exploration of decision space with ML, ML-based 
resource management and control, optimal decisions for complex systems   

Purpose:  Define priority research 
directions for applied 
mathematics in scientific 
machine learning (ML). Identify 
the challenges and opportunities 
for increasing the rigor, 
robustness, and reliability of ML 
for DOE missions.

Applied Math program has laid the groundwork to harness  Machine Learning and 
Artificial Intelligence for scientific purposes
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AI for Science Town Halls: Learning from Exascale 

• Modeled after Exascale Town Halls in 2007

• Collecting community input on the opportunities 
and challenges facing the scientific community 
in the era of convergence of High Performance 
Computing (HPC) and artificial intelligence (AI) 
technologies and data  

• Engage the DOE science community in a series of 
broad and open discussions about
• opportunities that can be realized by advancing and 

accelerating the development of AI capabilities 
specifically for science and science use cases, 

• opportunities from the DOE Office of Science as well 
as selected topics from energy and technology 
domains and will include approaches combining 
experiments, traditional modeling and simulation, and 
machine/deep learning

• opportunities that include the DOE science user 
facilities. Led to many other workshops (>10)
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The AI for Science Town Halls so far

• Over 1000 registrations across 4 Town Halls

• All 17 DOE National Laboratories 

• 39 Companies from large and small

• Over 90 different universities

• 6 DOE/SC Offices + EERE and NNSA

ANL July 22-23 357
ORNL Aug 20-21 330
LBNL Sept 11-12 349
DC Oct 22-23  273

Totals 1309 1309

+100 online
+ ?
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Breakouts and Subtopics
Science and Engineering

High Energy 
Physics

Nuclear 
Physics Fusion

Energy 
Sciences

Earth 
Sciences

Biological 
Sciences

Energy 
Technologies

Computing 
Sciences

Cosmology and 
Astrophysics

Particle Physics

Accelerator 
Design and 

Control

Materials and 
Chemistry 
Modeling 

Photon/Neutron 
Science

Electron 
Microscopy

Climate & 
Carbon

Subsurface

Water

Environmental 
Biology

Imaging 

Syn Biology

Health

Engineering and 
Manufacturing

Smart 
Grid/Urban 

Wind and Solar

Mobility

AI for 
hardware / 
software

AI for 
networks / 
computing 

facilities

Particle 
Identification  

Particle 
Tracking

Control

Feature  
Tracking

Steering

Design and 
Control

Crosscuts

Foundations Data Lifecycle Software Hardware Computing  Facilities
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AI for Science Vision: 2020 ⟹2030
• AI will enable us to attack new problems

• AI becomes equal partners to modeling and simulation and data analysis 

• AI will enable experimentalists to harness the power of Exascale
computing

• AI will power automated laboratories and change the nature of 
experimental science

• AI will need new computing architectures, new software environments, 
new policies and create new user communities and new ways of 
dissemination

• AI will improve how DOE laboratories operate and how work is done
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In Ten Years…
• Learned Models Begin to Replace Data

• queryable, portable, pluggable, chainable, secure

• Experimental Discovery Processes Dramatically Refactored
• models replace experiments, experiments improve models

• Many Questions Pursued Semi-Autonomously at Scale
• searching for materials, molecules and pathways, new physics

• Simulation and AI Approaches Merge
• deep integration of ML, numerical simulation and UQ 

• Theory Becomes Data for Next Generation AI
• AI begins to contribute to advancing theory

• AI Becomes Common Part of Scientific Laboratory Activities
• Infuses scientific, engineering and operations
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Earth and Environmental Sciences: State of the Art

A predictive understanding of the Earth system is crucial for utilizing its 
energy and water resources while mitigating costly environmental hazards.

AI approaches are playing useful roles in

• Geophysical characterization and
change detection

• Data assimilation and model–data
integration

• Data-driven and physics-informed
machine learning

• Surrogate modeling
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Earth and Environmental Sciences: State of the Art

A variety of AI methods (e.g., data mining, artificial neural networks, and 
random forests) are beginning to be used for

• Producing weather forecasts

• Environmental data gap filling

• Satellite remote sensing and
geophysical image analysis

• Process parameter estimation and
uncertainty quantification

• Spatiotemporal pattern discovery

• Physics-constrained simulation
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Grand Challenge #1

Project environmental risk and develop 
resiliency in a changing environment

• Increasing frequency of weather 
extremes and changing environment 
pose risks to energy infrastructure and 
the built environment

• Sparse observations and inadequate 
model fidelity limit the ability to 
identify vulnerability, mitigate risks, 
and respond to disasters
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Grand Challenge #1

• New tools are needed to accelerate 
projection of weather extremes and 
impacts on energy infrastructure

• Building resiliency to address evolving 
risks will benefit from integration of 
smart sensing systems, built-for-
purpose models, ensemble forecasts 
to quantify uncertainty, and dynamic 
decision support systems for critical 
infrastructure
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Grand Challenge #2

Characterize and modify subsurface conditions for 
responsible energy production, CO2 storage, and 
contaminant remediation

• National energy security and transition to renewable 
energy resources relies on utilization of subsurface 
reservoirs for energy production, carbon storage, and 
spent nuclear fuel storage

• Subsurface data are uncertain, disparate, diverse, sparse, 
and affected by scaling issues

• Subsurface process models are incomplete, uncertain, 
and frequently unreliable for prediction
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Grand Challenge #2

• We need to substantially increase hydrocarbon 
extraction efficiency, discover and exploit 
hidden geothermal resources, reduce induced 
seismicity and other impacts, improve geologic 
CO2 storage, and predict long-term fate and 
transport of contaminants

• Mitigating risks requires improved subsurface 
characterization and assimilation of real-time 
data streams into predictive models of 
geological and ecological processes
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Grand Challenge #3

Develop a predictive understanding of the Earth 
system under a changing environment

• To advance the nation’s energy and infrastructure 
security, a foundational scientific understanding of 
complex and dynamic hydrological, biological, and 
geochemical processes and their interactions is 
required (across atmosphere, ocean, land, ice)

• Knowledge must be incorporated into Earth 
system models to project future climate conditions 
for various scenarios of population, 
socioeconomics, and energy production and use

Energy & Water Cycles

Carbon & Biogeochemical Cycles
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Grand Challenge #3

• Accurate predictions are needed to 
quantify changes in atmospheric and 
ocean circulation and weather extremes, 
to close the carbon cycle, and to 
understand responses and feedbacks of 
human, terrestrial, and marine ecosystems 
to environmental change

• Advances in genomics and bioscience data 
need to be leveraged to provide detailed 
understanding of plant–microbial 
interactions and their adaptations and 
feedbacks to the changing environment
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Grand Challenge #4

Ensure global water security under a 
changing environment

• Water resources are critical for energy 
production, human health, food 
security, and economic prosperity

• Water availability and water quality are 
impacted by environmental change, 
weather extremes, and disturbances 
such as wildfire and land use change 
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Grand Challenge #4

• Methods are needed to integrate 
disparate and diverse multi-scale data 
with models of watersheds, rivers, and 
water utility infrastructure

• Predictions of water quality and 
quantity require data-driven models 
and smart sensing systems

• Water resource management must 
account for changes in weather 
extremes, population, and economic 
growth
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Use AI to Accelerate Synthetic Biology
• AI to predict the relationship between Genotypes and Phenotypes

• Today ML can predict antibiotic resistance from genomes without culturing the organism as 
accurately as we can measure resistance in the lab

• ML to predict protein function from protein sequence
• Today DL can predict protein structure from sequence (DeepMind, TTIC, etc.)

• Generative models to design biosynthetic pathways
• Today ML can predict metabolic pathways from genomes

• Generative models to compose collections pathways into subsystems

• Generative models to translate from collections of functions to a set of modules

• Models to wrap biological modules with regulation and signaling systems

• Seq2seq models to translate functional blocks into genome sequences

• AI to control the routine fabrication and synthesis of novel whole organisms
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Building the Database to Support BioDesign

Today we have >300,000 genomes >100,000 metagenomes

In ten years we could have  > 10,000,000 genomes >1,000,000 metagenomes Food for Models!
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With a robust biodesign capability we could…

• Replace chemical factories with small safe portable 
biomanufacturing 

• Democratize and accelerate drug development

• Produce novel food grade protein and fiber sources

• Produce biological carbon capture systems

• Produce designer polymers that are environmentally benign 

• Harness bespoke biological systems for water purification

• Integrate 3d printable bioinks with biological computing and 
control to produce new types of smart matter 
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What’s Next after the AI for Science Town Halls

Work with other Program Offices to build a coordinated SC AI research 
program similar to our Quantum program

• As a first step, on Tuesday, SC Director Fall announced forthcoming 
charge to ASCAC 
• to establish a subcommittee to look at the outputs from the several 

workshops and subcommittee reports that have identified and enumerated 
the scientific opportunities and some challenges from the intersection of 
AI/ML with data-intensive science and high performance computing activities 
and 

• to analyze the opportunities and challenges for the Office of Advanced 
Scientific Computing Research (ASCR) and the Office of Science associated 
with Artificial Intelligence and Machine Learning. 
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AI Revolution
• Learned Models Replace Data

•Experimental Discovery Refactored

•Questions Pursued Semi-Autonomously

• Simulation and AI Merge

• Theory Becomes Data

•AI Laboratories 


