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Multiple time scales 
(stiffness)
The presence of exceedingly 
large numbers of molecules 
that must be accounted for 
in SSA
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In the heat-shock response in E. 
Coli, an estimated 20 - 30 sigma-
32 molecules per cell play a key 
role in sensing the state of the cell 
and in regulating the production of 
heat shock proteins.  The system 
cannot be simulated at the fully 
stochastic level due to:

Khammash et al.
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Stochastic Simulation Algorithm (SSA)
Accelerated discrete stochastic simulation 
(tau-leaping)
Stochastic partial equilibrium approximation 
(slow-scale SSA)
StochKit software
Under construction
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Propensity function                    the probability, given   , 

that one       reaction will occur somewhere inside      in the next 

infinitesimal time interval              

When that reaction occurs, it changes the state.  The amount by 

which      changes is given by             the change in the number of 

molecules produced by one       reaction

is a jump Markov process
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a j (x)dt = X(t) = X

R j

Ω
[t, t + dt]

Xi υ i j =
Si

R j

X(t)
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Given a subinterval of length    , if we could determine 
how many times each reaction channel fired in each 
subinterval, we could forego knowing the precise 
instants at which the firings took place.  Thus we could 
leap from one subinterval to the next.

How long can that subinterval be?  Tau-leaping is exact 
for constant propensity functions, thus     is selected so 
that no propensity function changes ‘appreciably.’
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Agrees with SSA 
in the small step 
size limit

Equivalent to 
Forward Euler in 
the SDE and 
ODE regimes
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Update Formula

ΔX = ν P(a(x),τ )
where
ΔX       Change of state
x          Current state
τ          Time step
P(a,τ ) Poisson variable with
            parameters a and τ
aj (x)   Propensity functions
ν ij         Change in species i
            due to reaction j     
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ΔX =ντa(x +ΔX)+ν P(a(x),τ)−ντa(x)
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First-order accurate in the moments

For ‘large’ stepsizes, implicit tau damps the noise in 
‘fast’ species, whereas explicit tau method amplifies 
the noise

The distribution information of the fast species can be 
easily recovered by taking a few small time steps 
whenever this information is needed - this ‘down-
shifting’ works because the system is a Markov 
process!
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In deterministic simulation of chemical systems, the 
partial equilibrium approximation assumes that the 
fast reactions are always in equilibrium.
These fast reactions are thus treated as algebraic 
constraints.

In stochastic simulation, the states keep changing.  
The stochastic partial equilibrium approximation is 
based on the assumption that the distributions
of the fast species remain unchanged by the fast 
reactions.

Slow-scale approximation Lemma – devil is in the 
details.
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Heat Shock Response ModelHeat Shock Response Model
Stochastic Model involves 28 species and 61 chemical 
reactions.  This is a moderate-sized model.

12 fast reactions were chosen for the SPEA.  The fast 
reactions were identified from a single SSA simulation to be 
the ones that fired most frequently.  These 12 reactions fire 
99% of the total number of times for all reaction channels.

CPU time for the multiscale SSA
Without down-shifting:  3 hours for 10,000 runs
With down-shifting:  4 hours for 10,000 runs

Accuracy: 
Without down-shifting: slow species distributions accurate
With down-shifting: all species distributions accurate

Speedup for 10,000 simulations (SSA takes 10 days on 1.5 
Ghz Workstation)

Without down-shifting:  80X faster
With down-shofting: 60X faster
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SSA – Fastest SSA Algorithm!

Constant-stepsize explicit, implicit, trapezoidal tau-leaping 
modules

Adaptive-stepsize, non-negativity preserving explicit tau/SSA 
(IMEX tau/SSA soon)

Slow-scale SSA

SBML Converter

Parallel (across an ensemble)

More to come! – Adaptive, hybrid, spatially-dependent!
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Next-generation algorithms and software for well-

mixed systems:
Automatic Method and Stepsize Selection

Latest algorithm efficiently and reliably adapts stepsizes for 
both the stiff and nonstiff cases, detects stiffness and 
switches between explicit and implicit tau, preserves 
nonnegativity and uses SSA for reactions involving any 
species with small population

Needs to be combined with ssSSA to handle efficiently 
problems with fast reactions involving species with small 
population – slow-scale tau-leaping automatically partitions 
the reversible reactions in the system

Fully-adaptive algorithms and software still to come
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Ultra-fast SSA (computing ensembles)
SSA on GPU architecture – initial 
implementation of our fastest SSA 
algorithm on $600 NVIDIA GPU card runs 
more than 250x faster than workstation 
alone!

SSA on the Grid

Ultra-fast SSA (computing ensembles)
SSA on GPU architecture – initial 
implementation of our fastest SSA 
algorithm on $600 NVIDIA GPU card runs 
more than 250x faster than workstation 
alone!

SSA on the Grid

PNY 8800 GeForce PCIe Graphics Card, 16x8 processors



Spatially inhomogeneous stochastic systems
Molecular crowding  - how do the propensities 
change? (Gillespie, Lampoudi, Petzold 2007)

What is an appropriate cell size?

Parallelization
When you can exploit problem structure to decouple the 
SSA simulations in grid cells between larger time steps, 
parallelization is easy – fractional step HMKMC Method 
(Zheng, Stephens, Braatz, Alkire, Petzold, 2007  -
Electrodeposition of copper interconnects in chip 
fabrication)

Otherwise, this is an unsolved problem (we have some 
ideas)
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