# A Local Corrections Algorithm for Solving Poisson's Equation in Three Dimensions

Presenter: Phil Colella, LBNL

Other authors: Peter McCorquodale LBNL; Gregory Balls and Scott Baden, UCSD.





#### **High-Performance Solvers for Potential Theory**

$$\varphi(\mathbf{x}) = \int_{\Omega} G(\mathbf{x} - \mathbf{y})\rho(\mathbf{y})d\mathbf{y} , \, \mathbf{x} \in \Omega \qquad G(\mathbf{z}) = -\frac{1}{4\pi|\mathbf{z}|}$$

Want multiresolution solvers for gridded data. Applications: AMR-PIC for Vlasov-Poisson, cosmology (particles for collisionless matter, finite-volume method for gas); incompressible flow.

Iterative methods for  $\Delta \varphi = \rho$ : ~10 flops / grid point between communications steps leads to poor parallel scaling (100s of processors).

Hockney's method for infinitedomain boundary conditions: domain-doubling + FFT. Not adaptive, increases the amount of work by 8x in 3D.







## **Analysis-Based Poisson Solvers**

$$\Delta \varphi = \rho \ , \ \varphi(\boldsymbol{x}) = \int\limits_{\Omega} G(\boldsymbol{x} - \boldsymbol{y}) \rho(\boldsymbol{y}) d\boldsymbol{y} \ , \ \boldsymbol{x} \in \Omega$$



Idea: disjoint regions in space are decoupled, modulo analytic functions. Domain decomposition should lead to efficient parallel solvers.

- Multigrid: localizes computation, but not communication.
- Schwarz domain decomposition: still iterative.
- Fast multipole method: localizes computation and communication noniteratively, but cost per point goes up significantly with the number of dimensions.





### Method of Local Corrections (Anderson, 1986)

To compute 
$$\varphi(\mathbf{x}) = \int_{\Omega} G(\mathbf{x} - \mathbf{y})\rho(\mathbf{y})d\mathbf{y} \ , \ \mathbf{x} \in \Omega$$

(1) Solve local problems on overlapping local patches:

$$\varphi(\mathbf{x}) = \int_{\Omega_0^l} G(\mathbf{x} - \mathbf{y}) \rho(\mathbf{y}) d\mathbf{y} \ , \ \mathbf{x} \in \Omega^l \qquad \bigcup_l \Omega_0^l = \Omega \ , \ \Omega_0^{l'} \bigcap \Omega_0^l = \emptyset$$

(2) Solve a single coarse grid problem to represent the nonlocal coupling:

$$\begin{aligned} R_{\boldsymbol{i}}^{H,l} = & (\Delta^H \phi^l)_{\boldsymbol{i}} \text{ if } \boldsymbol{i} H \in \Omega^l \qquad R^H = \sum_l R^{H,l} \qquad \phi^H = G^H * R^H \\ = & 0 \qquad \text{otherwise} \end{aligned}$$

(3) Compute composite solution as combination of local fields and interpolated corrected global field:

$$\phi(\boldsymbol{x}) = \sum_{l:\boldsymbol{x}\in\Omega^l} \phi^l(\boldsymbol{x}) + I(\phi^H - \sum_{l:\boldsymbol{x}\in\Omega^l} \phi^l)(\boldsymbol{x})$$





# Field Spreading Using Mehrstellen Operators (Mayo 1982, Anderson 1986)

Let  $\,\phi=G*\rho, supp(\rho)\subset\Omega^l\,$  . Then the error in the field values on the grid satisfies

$$\Delta^H(\phi - \phi^H) = R^{comp}$$

where

$$\begin{split} R^{comp}_{\pmb{i}} &= (\Delta^H \phi)_{\pmb{i}} \text{ if } dist(\pmb{i}H, supp(\rho)) > CH \\ &= 0 \text{ otherwise} \end{split}$$

i.e.  $R^{comp}$  is the truncation error of  $\Delta^H$  applied to a harmonic function outside the correction radius.





## **Mehrstellen Discretizations**

19 point:  $\Delta_{19}^H \phi = \Delta \phi + \frac{H^2}{12} \Delta \rho + O(H^4) \nabla^6 \phi$ 27 point:  $\Delta_{27}^H \phi = \Delta \phi + \frac{H^2}{12} \Delta \rho + H^4 L^4(\rho) + O(H^6) \nabla^8 \phi$ 

 $\Rightarrow R^{comp}$  is a rapidly decreasing function of the distance from the charge. Cutoff distance can be easily tuned to make field spreading arbitrarily accurate.



# **Spatial Discretization of Local Solutions**

James-Lackner Algorithm for Computing G\*p (1977)



If  $\rho$  is piecewise-constant, there is a loss of smoothness leading to a loss of accuracy in the overall MLC algorithm. For this reason, we separate out the monopole components and treat them exactly.





# **Spatial Discretization of Local Solutions**

#### Fast Multipole Method for the Boundary Potential

In 3D, the direct calculation of the surface-surface potential is too expensive  $(O(N^{4/3}))$ . We reduce this to  $O(N^{2/3})$  using a simplified multipole expansion. The resulting method is 3X faster than the Hockney domain-doubling method.



Use the 2D multipole expansion on the red patch to evaluate the field on the coarse (blue) grid. The remaining grid points are computed using high-order interpolation.

$$\vec{x}) = \sum_{i_0,i_1} \sum_{p_0,p_1} \frac{A_{i_0,i_1}^{p_0,p_1,-,2} \times}{\frac{(-1)^{p_0+p_1}}{p_0!p_1!}} \frac{\partial^{p_0+p_1}G}{\partial z_0^{p_0}\partial z_1^{p_1}} (x_0 - i_0rh, x_1 - i_1rh, x_2 + s_1h)$$



 $\Phi^{-,2}($ 



# **Parallel Implementation**

#### Parallel Computation

(1) Local problems are independent, and trivially parallel:

$$\rho = \sum_{l} \rho^{l}, supp(\rho^{l}) \subset \Omega_{0}^{l} \qquad \phi^{l} = G * \rho^{l} \text{ on } \Omega^{l}, \Omega^{l} \supset \Omega_{0}^{l}$$

(2) The global solve is a bottleneck, but can itself be parallelized, either by FFT, or applying MLC recursively. It is a much smaller calculation, so there are typically more than enough resources.

$$\begin{aligned} R^{H,l} = &\Delta^H \phi^l \text{ if } iH \in \Omega^l \\ = &0 \text{ otherwise} \end{aligned} \qquad R^H = \sum_l R^{h,l} \qquad \phi^H = G^H * R^H \end{aligned}$$

(3) The local interactions / local corrections step is used to compute boundary conditions on patches, which are propagated to the interior by another Dirichlet solve.

$$\phi(\boldsymbol{x}) = \sum_{l:\boldsymbol{x}\in\Omega^l} \phi^l(\boldsymbol{x}) + I(\phi^H - \sum_{l:\boldsymbol{x}\in\Omega^l} \phi^l)(\boldsymbol{x})$$

<u>Parallel Communications</u> Comparable to one multigrid V-cycle: fine-tocoarse between (1) and (2), and coarse-to-fine between (2) and (3), plus an exchange of local fine-fine ghost point data.





# **Test Problem**

- Localized oscillatory charge distribution.
- Two levels of refinement, fixed-size 32<sup>3</sup> patches.
- FFT-based bottom solver, parallelized over 2D slabs.

$$\rho_m^{osc}(r) = \begin{cases} ((r - r^2)\sin(2m\pi r))^2, & \text{if } r < 1; \\ 0, & \text{if } r \ge 1. \end{cases}$$

$$|x-c_3|$$

$$\rho(\boldsymbol{x}) = \frac{1}{R^3} \left( \rho_m^{osc}(|\frac{\boldsymbol{x} - \boldsymbol{c}_1|}{R}) + \rho_m^{osc}(\frac{|\boldsymbol{x} - \boldsymbol{c}_2|}{R}) + \rho_m^{osc}(\frac{|\boldsymbol{x} - \boldsymbol{c}_3|}{R}) \right)$$

| Size | thre          | e-level examp | ole         |
|------|---------------|---------------|-------------|
| N    | fine          | middle        | coarse      |
| 2048 | 50 923 779    | 6 440 067     | 2 146 689   |
| 4096 | 405 017 091   | 21 567 171    | 16 974 593  |
| 8192 | 3 230 671 875 | 99 228 483    | 135 005 697 |





#### **Results - Accuracy**

| m  | h      | $  \epsilon^h_{all}  _\infty$ | p    | $  \epsilon^h_{fine}  _2$     | p    | $  \epsilon^h_{all}  _2$ | p    | $\lambda/h$ |
|----|--------|-------------------------------|------|-------------------------------|------|--------------------------|------|-------------|
| 7  | 1/2048 | $2.132 \times 10^{-5}$        |      | $1.632 \times 10^{-7}$        |      | $1.738 \times 10^{-7}$   |      | 7.31        |
| 7  | 1/4096 | $4.735 \times 10^{-6}$        | 2.17 | $2.379 \times 10^{-8}$        | 2.78 | $4.712 \times 10^{-8}$   | 1.88 | 14.63       |
| 7  | 1/8192 | $1.130 \times 10^{-6}$        | 2.07 | $5.720 \times 10^{-9}$        | 2.06 | $8.419 \times 10^{-9}$   | 2.48 | 29.26       |
| m  | h      | $  \epsilon^h_{all}  _\infty$ | p    | $  \epsilon^h_{fine}  _2$     | p    | $  \epsilon^h_{all}  _2$ | p    | $\lambda/h$ |
| 15 | 1/2048 | $2.437 \times 10^{-5}$        |      | $2.009 \times 10^{-7}$        |      | $2.357 \times 10^{-7}$   |      | 3.41        |
| 15 | 1/4096 | $4.906 \times 10^{-6}$        | 2.31 | $2.642 \times 10^{-8}$        | 2.93 | $3.061 \times 10^{-8}$   | 2.95 | 6.83        |
| 15 | 1/8192 | $1.157\times 10^{-6}$         | 2.08 | $6.648\times10^{-9}$          | 1.99 | $9.737\times10^{-9}$     | 1.65 | 13.65       |
| m  | h      | $  \epsilon^h_{all}  _\infty$ | p    | $  \epsilon_{fine}^{h}  _{2}$ | p    | $  \epsilon^h_{all}  _2$ | p    | $\lambda/h$ |
| 30 | 1/2048 | $5.022 \times 10^{-5}$        |      | $3.798 \times 10^{-7}$        |      | $3.848 \times 10^{-7}$   |      | 1.71        |
| 30 | 1/4096 | $5.274 	imes 10^{-6}$         | 3.25 | $3.795 	imes 10^{-8}$         | 3.32 | $6.296\times 10^{-8}$    | 2.61 | 3.41        |
| 30 | 1/8192 | $1.542\times 10^{-6}$         | 1.77 | $7.593\times10^{-9}$          | 2.32 | $1.270\times 10^{-8}$    | 2.31 | 6.83        |

Three-level convergence results. The wavelength  $\lambda=R/(2m)=1/(40m)$  is a measure of the smallest length scale in the problem.

| m | h      | $  \epsilon^h_{all}  _{\infty}$ | p    | $  \epsilon^{h}_{fine}  _{2}$ | p    | $  \epsilon^h_{all}  _2$ | p     | $\lambda/h$ |
|---|--------|---------------------------------|------|-------------------------------|------|--------------------------|-------|-------------|
| 7 | 1/2048 | $4.280 \times 10^{-5}$          |      | $8.449 \times 10^{-7}$        |      | $2.608 \times 10^{-6}$   |       | 7.31        |
| 7 | 1/4096 | $2.794\times10^{-5}$            | 0.62 | $7.009\times10^{-7}$          | 0.27 | $2.500\times10^{-6}$     | 0.06  | 14.63       |
| 7 | 1/8192 | $1.971 	imes 10^{-5}$           | 0.50 | $6.713	imes10^{-7}$           | 0.06 | $2.521\times 10^{-6}$    | -0.01 | 29.26       |

Three-level convergence results, without treating the monopole component separately.





## **Aggregate Performance**

|      | Size |       | Tin   | Total | Grind |      |      |      |       |           |
|------|------|-------|-------|-------|-------|------|------|------|-------|-----------|
| P    | N    | InitF | InitM | Crse  | BndM  | FinM | BndF | FinF | (sec) | (µsec/pt) |
| 16   | 2048 | 44.99 | 12.52 | 3.51  | 0.33  | 0.66 | 2.64 | 4.89 | 69.57 | 21.86     |
| 128  | 4096 | 45.51 | 6.76  | 10.19 | 0.15  | 0.30 | 4.12 | 4.75 | 71.83 | 22.70     |
| 1024 | 8192 | 46.01 | 3.95  | 13.04 | 0.15  | 0.17 | 4.03 | 4.78 | 72.28 | 22.91     |

P = number of processors, N = effective grid resolution at the finest level. Grind = proc. secs. / point Timings performed on seaborg.nersc.gov.

• Scaled speedup (weak scaling): 95% efficiency up to 1024 processors.

• Aggregate performance: 72 seconds to compute solution on 3 x 10<sup>9</sup> grid points (1024 processors). Comparable to cost / grid point of uniform grid FFT computation, but applied to a locally-refined grid.

|     |      | Size          | Times | for each | Total | Grind  |       |              |
|-----|------|---------------|-------|----------|-------|--------|-------|--------------|
| Р   | N    | points        | Homo  | Normal   | FMM   | Inhomo | (s)   | $(\mu s/pt)$ |
| 4   | 256  | 16 974 593    | 10.53 | 0.08     | 2.23  | 57.34  | 70.20 | 16.54        |
| 32  | 512  | 135 005 697   | 13.39 | 0.87     | 4.51  | 22.93  | 41.72 | 9.89         |
| 256 | 1024 | 1 076 890 625 | 13.65 | 3.06     | 10.53 | 19.26  | 46.52 | 11.06        |

FFT-based infinite-domain solution on uniform grid.





# **Communications Performance**

|      | Size | Communic | Total  | % of      |      |         |
|------|------|----------|--------|-----------|------|---------|
| Р    | N    | Boundary | Coarse | Residuals | (s)  | runtime |
| 16   | 2048 | 0.37     | 0.22   | 0.08      | 0.68 | 0.97 %  |
| 128  | 4096 | 1.56     | 0.58   | 0.14      | 2.28 | 3.17 %  |
| 1024 | 8192 | 1.40     | 1.77   | 0.68      | 3.85 | 5.32 %  |

Time spent in MPI communications. Total run times of 69-72 seconds.

• Overall communications costs a few percent of total run time, even up to 1024 processors.

• Most of the non-scaling communication is in the bottom level solver, which uses a parallel FFT.





# **Future Work**

#### <u>Algorithmic issues</u>

• New version of multilevel algorithm that preserves association of charge distributions with patches.

• Systematic analysis of accuracy using multipole ideas; tunable accuracy.

• Specialized versions for computing gradient fields; extension to diffusion equations, finite-volume discretizations.

• Complex geometries; use as preconditioner for variablecoefficient problems.

#### Software issues

• Performance tuning, scalability to  $\geq 10^5$  processors.

• Robust software components for applications, as opposed to current breadboard implementation.















# **AMR for Petascale Computing**

• Preliminary results for hyperbolic PDE indicate scalability of AMR to 10<sup>5</sup> processors.

• Scaling bottleneck for applying AMR to a number of fluid problems (turbulence, self-gravity, kinetic models for charged fluids) is Poisson.

• AMR-MLC has same communications costs, computation / communication ratio as AMR for hyperbolic PDE. Provides possible path forward to petascale for these problems.





#### **Results - Accuracy**

|    |        | one-grid Mehrstelle                                   | en   |             |                 | three-level MLC                                       |      |             |
|----|--------|-------------------------------------------------------|------|-------------|-----------------|-------------------------------------------------------|------|-------------|
| m  | H      | $  \epsilon^{H}  _{\infty}/  \phi^{exact}  _{\infty}$ | p    | $\lambda/H$ | h               | $  \epsilon^{h}  _{\infty}/  \phi^{exact}  _{\infty}$ | p    | $\lambda/h$ |
| 7  | 1/256  | $3.52935 \times 10^{-2}$                              |      | 0.91        | 1/4096          | $1.05571 \times 10^{-5}$                              |      | 14.63       |
| 7  | 1/512  | $4.19313 \times 10^{-4}$                              | 6.40 | 1.83        | 1/8192          | $2.90449 \times 10^{-6}$                              | 1.86 | 29.26       |
| 7  | 1/1024 | $1.72642\times10^{-5}$                                | 4.60 | 3.66        | -               |                                                       |      |             |
|    |        | one-grid Mehrstelle                                   | en   |             | three-level MLC | ;                                                     |      |             |
| m  | Н      | $  \epsilon^{H}  _{\infty}/  \phi^{exact}  _{\infty}$ | p    | $\lambda/H$ | h               | $  \epsilon^{h}  _{\infty}/  \phi^{exact}  _{\infty}$ | p    | $\lambda/h$ |
| 15 | 1/256  | $1.01866 \times 10^{-2}$                              |      | 0.43        | 1/4096          | $8.38323 \times 10^{-6}$                              |      | 6.83        |
| 15 | 1/512  | $3.28842 \times 10^{-3}$                              | 1.63 | 0.85        | 1/8192          | $3.41383 \times 10^{-6}$                              | 1.30 | 13.65       |
| 15 | 1/1024 | $1.44633\times10^{-4}$                                | 4.51 | 1.71        |                 |                                                       |      |             |
|    |        | one-grid Mehrstell                                    | en   |             |                 | three-level MLC                                       | ;    |             |
| m  | H      | $  \epsilon^{H}  _{\infty}/  \phi^{exact}  _{\infty}$ | p    | $\lambda/H$ | h               | $  \epsilon^{h}  _{\infty}/  \phi^{exact}  _{\infty}$ | p    | $\lambda/h$ |
| 30 | 1/256  | $4.55566 \times 10^{-2}$                              |      | 0.21        | 1/4096          | $9.27098 \times 10^{-6}$                              |      | 3.41        |
| 30 | 1/512  | $4.16701 \times 10^{-3}$                              | 3.45 | 0.43        | 1/8192          | $2.66318 \times 10^{-6}$                              | 1.80 | 6.83        |
| 30 | 1/1024 | $9.68717\times10^{-4}$                                | 2.10 | 0.85        |                 |                                                       |      |             |

Comparison of three-level MLC calculation to uniform-grid Mehrstellen calculations using infinite-domain algorithm.





## **Spatial Discretization of Local Solutions**

#### FFT Solvers for Volume Potentials

Single-grid Dirichlet solves are done using FFTW fast sine transform. To preserve the strong localization of  $\Delta^H \phi^l$ , the use of Mehrstellen in the local solves is essential. For example, for the 27-point operator,

$$\phi^{l,h} = \phi^l + h^4 \Psi(x) + O(h^6)$$

where  $\Delta \Psi = 0$  away from the support of  $\rho$ .

$$\Delta^{H} \phi^{l,h} = O(h^{6}) + O(H^{6}) + O(H^{6}h^{4})$$



