
(De)composable Abstractions for
a Changing Architectural
Landscape

Sriram Krishnamoorthy

Pacific Northwest National Lab
ASCR Programming Challenges Workshop
July 2011

1

Programming Model Challenges

Architectural variability

Application execution variability

Algorithmic variability

Application programmer variability

2

Architectural Variability

Concurrency, especially multi-threading

Memory hierarchy/heterogeneity

Fault tolerance

Power/energy consumption

3

Application Execution Variability

Strong vs weak scaling

Fixed point vs dynamics

Stand-alone or in context of another calculation

Strongly-coupled vs ensemble/weakly-coupled

4

Algorithmic variability

New coupling of existing components
Eg., direct vs iterative solutions

Reformulation of existing algorithms

Eg., factorized representation of a specific input operator

New algorithms

Eg., low-order methods with increased sparsity

5

Application Programmer Variability

Not all application programmers work at the same level of
abstraction

Black-box/power users

Developers of calculations/methods

Infrastructure/runtime developers

6

The Objective

Sustainable abstractions
Maintainable over the next decade(s)

Accessible to domain experts
Encode today’s and tomorrow’s algorithms

Flexible and optimizable
Handle real application scenarios
Enough information for compile-time/runtime optimization

7

“Premature optimization is the root of all evil.”
 -- Donald Knuth

Programming Model Ecosystem

8

Hardware

Communication libraries

Traditional languages

Applications

Intra-node primitives

Data abstractions Control abstractions

Math frameworks/libraries

Parallel languages
Domain-specific languages/
frameworks

We may not replace all modules… for all applications … right now

Evolutionary Approach

Collection of inter-operable models

Composable abstractions

Decomposable abstractions

Auto-tune and generate code where possible

9

“The competent programmer is fully aware
of the strictly limited size of his own skull;
therefore he approaches the programming
task in full humility, and among other things
he avoids clever tricks like the plague.”
 -- Edsger W. Dijkstra

Collection of Inter-operable Models

Partitioned global address space data
Inter-operable with MPI

Task-based execution model

Iterative and recursive parallelism

Phase-based execution: Switch between

SPMD and task-based execution modes
GAS and partitioned data views

10

Partitioned Global Address Space Data

Exposes application data
structures to runtime

Data locality exposed to the
user and runtime

Communication operations
visible in the program

High-level operations on
global data

Scoped direct access to local
data

11

Physically distributed data

Global Address Space

Task-based Execution Model

Work as collection of tasks
Over-parallelize

Specification of dependences
Data in global address space

Enables task migration
Building blocks for

Functional models
Task-graph scheduling
Work stealing
…

12

Mixed QM/MM calculation

I/O scheduling

Composing Abstractions

Optimized implementations of individual operations
Potentially in different prog. models

Can we combine them effectively?

Translate domain information into runtime attributes

User provided
Runtime inferred

Intelligent and adaptive runtime

13

Composing Abstractions: Elements

14

func(A,B)

C = A op B

C = A op B;

D = C op E

while (i++)

 func();

Can cached values be reused?

Is owner-computes load
balanced? Is there sufficient
parallelism?

Does all of C need to be
computed before it can be
used?

What information from the
previous execution of func() is
still valid?

Object attributes

Profile-guided
parallelization &
scheduling

Consistency properties;
producer-consumer
pipelining

Conditional profiles

What transformations can be performed with this information?

Decomposable Abstractions

What if the provided abstraction does not suffice?
Expressivity
Performance

Provide a lower level of abstraction
But still in the eco-system

Implementation still as readable and adaptable

15

“The complexity of software is an essential property,
not an accidental one. Hence, descriptions of a
software entity that abstract away its complexity
often abstracts away its essence.”
 -- Fred Brooks

Decomposable Abstractions : Illustration

16

W

Native Source Code (C, Fortran, C++, Python)

Global DSL (declarative)

Eg: TCE, FMM, SpAMM
Intra-Node DSL

Intermediate DSL

(imperative/functional)

Task-based Execution Model

Global Data Structures

Inter-Node Interface &

Runtime

Intra-Node Interface

& Runtime

Hardware-independent layers
Hardware-specific layers

Transitioning Users

Embedded DSLs/directives that get transformed
Automatic injection

Phase-based execution

Incremental injection of new programming models

Accessible transformations to intermediate models

Let users change the decisions made

Software inter-operability

17

Reality Check

Benchmarks help, but cannot replace application
understanding

Success metric: Application scientists using the
programming model

Not all domain experts work at the same level of
abstraction

But they share our concerns and are motivated to look for
solutions

18

“… generalizations are like spectacles for
the short-sighted blind. They help, but they
are no substitute for excellent eyesight, ...”
 -- Bernard Cafferty

Be revolutionary, but take the users along!

19

