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Observations and Strategies for Next 
Generation Parallel Applications 



Three Parallel Computing Design Points 

• Terascale Laptop:  Uninode-Manycore 

• Petascale Deskside:  Multinode-Manycore  

• Exascale Center:  Manynode-Manycore 

Common Element 
Goal: Make 
Petascale = Terascale + more 
Exascale = Petascale + more 



Tramonto 
WJDC 

Functional 

•  New functional. 
•  Bonded systems. 
•  552 lines C code. 

WJDC-DFT (Werthim, Jain, Dominik, and Chapman) theory for bonded systems. (S. Jain, A. Dominik, and W.G. Chapman. 
Modified interfacial statistical associating fluid theory: A perturbation density functional theory for inhomogeneous complex fluids. J. 
Chem. Phys., 127:244904, 2007.) Models stoichiometry constraints inherent to bonded systems. 	


How much MPI-specific code?	


dft_fill_wjdc.c	




dft_fill_wjdc.c 
MPI-specific 

code 



SPMD Patterns for Domain Decomposition 

• Halo Exchange: 
– Conceptual. 
– Needed for any partitioning, halo layers. 
– MPI is simply portability layer. 
– Could be replace by PGAS, one-sided, … 

• Collectives: 
– Dot products, norms. 

• All other programming: 
– Sequential!!! 



Reasons for MPI/SPMD Success? 

• Portability?   Yes. 
• Standardized?   Yes. 
• Momentum?   Yes. 
• Separation of many  
Parallel & Algorithms  
concerns?   Big Yes. 

• Once framework in place: 
– Sophisticated physics added as serial code. 
– Ratio of science experts vs. parallel experts: 10:1. 

• Key goal for new parallel apps: Preserve this ratio 



Evolving Parallel Programming Model 
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Parallel Programming Model:  
Multi-level/Multi-device 

Stateless vectorizable 
computational kernels#

run on each core#

Intra-node (manycore) parallelism 
and resource management#

Node-local control flow (serial)#

Inter-node/inter-device (distributed) 
parallelism and resource management#

Threading#

Message Passing#

Computation#

computational 
node with 

manycore CPUs#
and / or#
GPGPU#

network of 
computational 

nodes#
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Domain Scientist’s Parallel Palette 
• MPI-only (SPMD) apps: 

–  Single parallel construct. 
–  Simultaneous execution. 
–  Parallelism of even the messiest serial code. 

• Next-generation PDE and related applications: 
–  Internode: 

•  MPI, yes, or something like it. 
•  Composed with intranode. 

–  Intranode:  
•  Much richer palette. 
•  More care required from programmer. 

• What are the constructs in our new palette? 



Obvious Constructs/Concerns 

• Parallel for: 
 forall (i, j) in domain {…} 
– No loop-carried dependence. 
– Rich loops. 
– Use of local memory for temporal reuse, efficient device 

data transfers. 
• Parallel reduce: 
forall (i, j) in domain { 

 xnew(i, j) = …; 
  delx+= abs(xnew(i, j) - xold(i, j)); 
} 
– Couple with other computations. 
– Concern for reproducibility. 



Other construct: Pipeline 

• Sequence of filters. 
• Each filter is: 

– Sequential (grab element ID, enter global assembly) or  
– Parallel (fill element stiffness matrix). 

• Filters executed in sequence. 
• Programmer’s concern: 

– Determine (conceptually): Can filter execute in parallel? 
– Write filter (serial code). 
– Register it with the pipeline. 

• Extensible: 
– New physics feature. 
– New filter added to pipeline. 



Other construct: Thread team 

• Multiple threads. 
• Fast barrier. 
• Shared, fast access memory pool. 
• Example: Nvidia SM 
• Supports fine-grain producer-consumer parallelism. 
• X86 more vague, emerging more clearly in future.  



Finite Elements/Volumes/Differences 
and parallel node constructs 

• Parallel for, reduce, pipeline, coarse tasking: 
– Sufficient for vast majority of node level computation. 
– Supports: 

• Complex modeling expression. 
• Vanilla parallelism. 

– Must be “stencil-aware” for temporal locality. 
• Thread team: 

– Complicated. 
– Requires more advanced parallel algorithm knowledge. 
– Useful in solvers. 



Resilient Algorithms: 
A little reliability, please. 
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Every calculation matters 

•  Small PDE Problem: ILUT/GMRES 
•  Correct result:35 Iters, 343M 

FLOPS 
•  2 examples of a single bad op. 
•  Solvers:  

–  50-90% of total app operations. 
–  Soft errors most likely in solver. 

•  Need new algorithms for soft errors: 
–  Well-conditioned wrt errors. 
–  Decay proportional to number of errors. 
–  Minimal impact when no errors. 

Description Iters FLOPS Recursive 
Residual 
Error 

Solution Error 

All Correct 
Calcs 

35 343M 4.6e-15 1.0e-6 

Iter=2, y[1] += 
1.0 
SpMV incorrect 
Ortho subspace 

35 343M 6.7e-15 3.7e+3 

Q[1][1] += 1.0 
Non-ortho 
subspace 

N/C N/A 7.7e-02 5.9e+5 

16 

Soft Error Resilience 

•  New Programming Model 
Elements:  
•  SW-enabled, highly reliable: 

•  Data storage, paths. 
•  Compute regions. 

•  Idea: New algorithms with 
minimal usage of high reliability. 

•  First new algorithm: FT-GMRES. 
•  Resilient to soft errors. 
•  Outer solve: Highly Reliable 
•  Inner solve: “bulk” reliability. 

•  General approach applies to 
many algorithms. 

M. Heroux, M. Hoemmen	




FTGMRES Results 
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FT−GMRES(50,10)
GMRES(50), 10 restart cycles
GMRES(500)



What we need and don’t need 
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What we need from Programming Models:  
Support for patterns 

• SPMD: 
– MPI does this well.  (TBB supports the rest.) 
–  Think of all that mpiexec does. 

•  Task graphs, pipelines 
–  Lightweight. 
–  Smart about data placement/movement, dependencies. 

• Parallel_for, Parallel_reduce: 
–  Should be automatic from vanilla source. 
– Make CUDA obsolete. OpenMP sufficient? 

•  Thread team: 
– Needed for fine-grain producer/consumer algorithms. 

• Others too. 
Goals:  
1)  Allow domain scientist think parallel, write sequential. 
2)  Support rational migration strategy. 



Needs: Data management 

• Layout as a first-class concept: 
– Construct layout, then data objects. 
– Chapel has this right. 

• Better NUMA awareness/resilience: 
– Ability to “see” work/data placement. 
– Ability to migrate data: MONT 

• Example: 
– 4-socket AMD with dual six-core per socket (48 cores). 
– BW of owner-compute: 120 GB/s. 
– BW of neighbor-compute: 30 GB/s. 
– Note: Dynamic work-stealing is not as easy as it seems. 

• Maybe better thread local allocation will mitigate problem. 



Other needs 

• Metaprogramming support: 
– Compile-time polymorphism 
– Fortran, C are not suitable.   
– C++ is, but painful. 
– Are new languages? 

• Reliability expression: 
– Bulk vs. high reliability. 

• Composable with other environments. 
–  Interoperable with MPI, threading runtimes. 



A Different Approach 

I don’t want to be considered a Luddite… 
• Massively threaded approaches have promise. 
• Makes coding much simpler, at least on a node. 
• Key question:  

Is there enough demand to produce high quality system? 



What I cannot use 

• Isolated tools: 
–  “Great ideas with marginal chance of being products.” 
– Fortran 2003 features: Still not available! 
– CAF, UPC: Too little, too late. 
– Rose: Where is ‘sudo apt-get install rose’? 

• Any programming environment effort: 
– Must have product plan, from desktop up, e.g., OpenMP. 
– Or must extend an existing product, e.g., TBB. 

• We use commodity chips because only a few orgs have 
the billions of dollars to design and fab. 

• We use commodity programming environments for the 
same reason. 



Summary 

•  Building the next generation of parallel applications requires enabling 
domain scientists: 

–  To write sophisticated computational expressions. 
–  Do so with serial fragments. 
–  Where fragments hoisted into scalable, resilient fragment. 

•  A pattern-based approach offers: 
–  Parallel thinking, sequential programming. 
–  A migration strategy similar to SPMD migration of early 90’s. 

•  Massively threaded programming is attractive: 
–  Is there a sufficient market to drive it? 

•  Progress in programming environment requires: 
–  Addressing technical requirements, yes, but 
–  Product planning has to be just as important. 



Extra Slides 



If FLOPS are free,  
why are we making them cheaper? 
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Larry Wall: 
Easy things should be easy, hard 

things should be possible. 

Why are we making easy things 
easier and hard things impossible? 
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Emerging Architecture Programming 
Challenges 



Factoring 1K to1B-Way Parallelism 

• Why 1K to 1B? 
– Clock rate: O(1GHz) → O(109) ops/sec sequential 
– Terascale: 1012 ops/sec → O(103) simultaneous ops 

•  1K parallel intra-node. 
– Petascale: 1015 ops/sec → O(106) simultaneous ops 

•  1K-10K parallel intra-node. 
•  100-1K parallel inter-node. 

– Exascale: 1018 ops/sec → O(109) simultaneous ops 
•  1K-10K parallel intra-node. 
•  100K-1M parallel inter-node. 

• Current nodes: 
– SPARC64™ VIIIfx: 128GF (at 2.2GHz). “K” machine 
– NVIDIA Fermi: 500GF (at 1.1GHz).  Tianhe-1A. 

Stein’s Law: If a trend cannot continue, it will stop.	

Herbert Stein, chairman of the Council of Economic Advisers under Nixon and Ford.	




Data Movement: Locality 

• Locality always important: 
– Caches: CPU 
– L1$ vs L2$ vs DRAM: Order of magnitude latency. 

• Newer concern: 
– NUMA affinity. 
–  Initial data placement important (unless FLOP rich). 
– Example: 

•  4-socket AMD with dual six-core per socket (48 cores). 
• BW of owner-compute: 120 GB/s. 
• BW of neighbor-compute: 30 GB/s. 

• GPUs: Not so much a concern. 



Memory Size 

• Current “healthy” memory/core:  
– 512 MB/core (e.g. MD computations). 
– 2 GB/core (e.g. Implicit CFD). 

• Future: 
– 512 MB/core “luxurious”. 



Resilience 

• Individual component reliability: 
– Tuned for “acceptable” failure rate. 

• Aggregate reliability: 
– Function of all components not failing. 
– May decline. 

• Size of data sets may limit usage of standard 
checkpoint/restart. 



Summary of Algorithms Challenge 

•  Realize node parallelism of O(1K-10K). 
• Do so  

– Within a more complicated memory system and  
– With reduced relative memory capacity and  
– With decreasing reliability. 



New Trends and Responses 

•  Increasing data parallelism: 
– Design for vectorization and increasing vector lengths. 
–  SIMT a bit more general, but fits under here. 

•  Increasing core count: 
–  Expose task level parallelism. 
–  Expresss task using DAG or similar constructs. 

• Reduced memory size: 
–  Express algorithms as multi-precision. 
– Compute data vs. store 

• Memory architecture complexity: 
–  Localize allocation/initialization. 
–  Favor algorithms with higher compute/communication ratio. 

• Resilience: Distinguish what must be reliably computed. 



Designing for Trends 

• Long-term success must include design for change. 
• Algorithms we develop today must adapt to future 
changes. 

• Lesson from Distributed Memory (SPMD): 
– What was the trend? Increasing processor count. 
– Domain decomposition algs matched trend. 

• Design algorithm for p domains. 
• Design software for expanded modeling within a domain. 



Placement and Migration 
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Placement and Migration 

• MPI: 
– Data/work placement clear. 
– Migration explicit. 

• Threading: 
–  It’s a mess (IMHO). 
– Some platforms good. 
– Many not. 
– Default is bad (but getting better). 
– Some issues are intrinsic. 



Data Placement on NUMA 

• Memory Intensive computations: Page placement has 
huge impact. 

• Most systems: First touch (except LWKs). 
• Application data objects: 

– Phase 1: Construction phase, e.g., finite element 
assembly. 

– Phase 2: Use phase, e.g., linear solve. 
• Problem: First touch difficult to control in phase 1. 
• Idea: Page migration. 

– Not new: SGI Origin.  Many old papers on topic. 
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Data placement experiments 

• MiniApp: HPCCG (Mantevo Project) 
• Construct sparse linear system, solve with CG. 
• Two modes: 

– Data placed by assembly, not migrated for NUMA 
– Data migrated using parallel access pattern of CG. 

• Results on dual socket quad-core Nehalem system. 
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Weak Scaling Problem 

  MPI and conditioned data approach comparable. 
  Non-conditioned very poor scaling. 
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Page Placement summary 

• MPI+OpenMP (or any threading approach) is best 
overall. 

• But: 
– Data placement is big issue. 
– Hard to control. 
–  Insufficient runtime support. 

• Current work: 
– Migrate on next-touch (MONT). 
– Considered in OpenMP (next version). 
– Also being studied in Kitten (Kevin  Pedretti). 

• Note: This phenomenon especially damaging to 
OpenMP common usage. 
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