
Next generation programming environments:
 What we need and do not need

Michael A. Heroux
Scalable Algorithms Department

Sandia National Laboratories

Collaborators:
SNL Staff: [B.|R.] Barrett, E. Boman, R. Brightwell, H.C. Edwards, A. Williams
SNL Postdocs: M. Hoemmen, S. Rajamanickam
MIT Lincoln Lab: M. Wolf
ORNL staff: Chris Baker

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin company, for the U.S. Department of Energyʼs National Nuclear Security Administration under contract DE-AC04-94AL85000. !

Observations and Strategies for Next
Generation Parallel Applications

Three Parallel Computing Design Points

• Terascale Laptop: Uninode-Manycore

• Petascale Deskside: Multinode-Manycore

• Exascale Center: Manynode-Manycore

Common Element
Goal: Make
Petascale = Terascale + more
Exascale = Petascale + more

Tramonto
WJDC

Functional

•  New functional.
•  Bonded systems.
•  552 lines C code.

WJDC-DFT (Werthim, Jain, Dominik, and Chapman) theory for bonded systems. (S. Jain, A. Dominik, and W.G. Chapman.
Modified interfacial statistical associating fluid theory: A perturbation density functional theory for inhomogeneous complex fluids. J.
Chem. Phys., 127:244904, 2007.) Models stoichiometry constraints inherent to bonded systems. 	

How much MPI-specific code?	

dft_fill_wjdc.c	

dft_fill_wjdc.c
MPI-specific

code

SPMD Patterns for Domain Decomposition

• Halo Exchange:
– Conceptual.
– Needed for any partitioning, halo layers.
– MPI is simply portability layer.
– Could be replace by PGAS, one-sided, …

• Collectives:
– Dot products, norms.

• All other programming:
– Sequential!!!

Reasons for MPI/SPMD Success?

• Portability? Yes.
• Standardized? Yes.
• Momentum? Yes.
• Separation of many
Parallel & Algorithms
concerns? Big Yes.

• Once framework in place:
– Sophisticated physics added as serial code.
– Ratio of science experts vs. parallel experts: 10:1.

• Key goal for new parallel apps: Preserve this ratio

Evolving Parallel Programming Model

8

Parallel Programming Model:
Multi-level/Multi-device

Stateless vectorizable
computational kernels#

run on each core#

Intra-node (manycore) parallelism
and resource management#

Node-local control flow (serial)#

Inter-node/inter-device (distributed)
parallelism and resource management#

Threading#

Message Passing#

Computation#

computational
node with

manycore CPUs#
and / or#
GPGPU#

network of
computational

nodes#

9

Domain Scientist’s Parallel Palette
• MPI-only (SPMD) apps:

–  Single parallel construct.
–  Simultaneous execution.
–  Parallelism of even the messiest serial code.

• Next-generation PDE and related applications:
–  Internode:

•  MPI, yes, or something like it.
•  Composed with intranode.

–  Intranode:
•  Much richer palette.
•  More care required from programmer.

• What are the constructs in our new palette?

Obvious Constructs/Concerns

• Parallel for:
 forall (i, j) in domain {…}
– No loop-carried dependence.
– Rich loops.
– Use of local memory for temporal reuse, efficient device

data transfers.
• Parallel reduce:
forall (i, j) in domain {

 xnew(i, j) = …;
 delx+= abs(xnew(i, j) - xold(i, j));
}
– Couple with other computations.
– Concern for reproducibility.

Other construct: Pipeline

• Sequence of filters.
• Each filter is:

– Sequential (grab element ID, enter global assembly) or
– Parallel (fill element stiffness matrix).

• Filters executed in sequence.
• Programmer’s concern:

– Determine (conceptually): Can filter execute in parallel?
– Write filter (serial code).
– Register it with the pipeline.

• Extensible:
– New physics feature.
– New filter added to pipeline.

Other construct: Thread team

• Multiple threads.
• Fast barrier.
• Shared, fast access memory pool.
• Example: Nvidia SM
• Supports fine-grain producer-consumer parallelism.
• X86 more vague, emerging more clearly in future.

Finite Elements/Volumes/Differences
and parallel node constructs

• Parallel for, reduce, pipeline, coarse tasking:
– Sufficient for vast majority of node level computation.
– Supports:

• Complex modeling expression.
• Vanilla parallelism.

– Must be “stencil-aware” for temporal locality.
• Thread team:

– Complicated.
– Requires more advanced parallel algorithm knowledge.
– Useful in solvers.

Resilient Algorithms:
A little reliability, please.

15

Every calculation matters

•  Small PDE Problem: ILUT/GMRES
•  Correct result:35 Iters, 343M

FLOPS
•  2 examples of a single bad op.
•  Solvers:

–  50-90% of total app operations.
–  Soft errors most likely in solver.

•  Need new algorithms for soft errors:
–  Well-conditioned wrt errors.
–  Decay proportional to number of errors.
–  Minimal impact when no errors.

Description Iters FLOPS Recursive
Residual
Error

Solution Error

All Correct
Calcs

35 343M 4.6e-15 1.0e-6

Iter=2, y[1] +=
1.0
SpMV incorrect
Ortho subspace

35 343M 6.7e-15 3.7e+3

Q[1][1] += 1.0
Non-ortho
subspace

N/C N/A 7.7e-02 5.9e+5

16

Soft Error Resilience

•  New Programming Model
Elements:
•  SW-enabled, highly reliable:

•  Data storage, paths.
•  Compute regions.

•  Idea: New algorithms with
minimal usage of high reliability.

•  First new algorithm: FT-GMRES.
•  Resilient to soft errors.
•  Outer solve: Highly Reliable
•  Inner solve: “bulk” reliability.

•  General approach applies to
many algorithms.

M. Heroux, M. Hoemmen	

FTGMRES Results

17	

1 2 3 4 5 6 7 8 9 10 11

10−8

10−6

10−4

10−2

100

Outer iteration number

Fault−Tolerant GMRES, restarted GMRES, and nonrestarted GMRES
(deterministic faulty SpMVs in inner solves)

FT−GMRES(50,10)
GMRES(50), 10 restart cycles
GMRES(500)

What we need and don’t need

18

What we need from Programming Models:
Support for patterns

• SPMD:
– MPI does this well. (TBB supports the rest.)
–  Think of all that mpiexec does.

•  Task graphs, pipelines
–  Lightweight.
–  Smart about data placement/movement, dependencies.

• Parallel_for, Parallel_reduce:
–  Should be automatic from vanilla source.
– Make CUDA obsolete. OpenMP sufficient?

•  Thread team:
– Needed for fine-grain producer/consumer algorithms.

• Others too.
Goals:
1)  Allow domain scientist think parallel, write sequential.
2)  Support rational migration strategy.

Needs: Data management

• Layout as a first-class concept:
– Construct layout, then data objects.
– Chapel has this right.

• Better NUMA awareness/resilience:
– Ability to “see” work/data placement.
– Ability to migrate data: MONT

• Example:
– 4-socket AMD with dual six-core per socket (48 cores).
– BW of owner-compute: 120 GB/s.
– BW of neighbor-compute: 30 GB/s.
– Note: Dynamic work-stealing is not as easy as it seems.

• Maybe better thread local allocation will mitigate problem.

Other needs

• Metaprogramming support:
– Compile-time polymorphism
– Fortran, C are not suitable.
– C++ is, but painful.
– Are new languages?

• Reliability expression:
– Bulk vs. high reliability.

• Composable with other environments.
–  Interoperable with MPI, threading runtimes.

A Different Approach

I don’t want to be considered a Luddite…
• Massively threaded approaches have promise.
• Makes coding much simpler, at least on a node.
• Key question:

Is there enough demand to produce high quality system?

What I cannot use

• Isolated tools:
–  “Great ideas with marginal chance of being products.”
– Fortran 2003 features: Still not available!
– CAF, UPC: Too little, too late.
– Rose: Where is ‘sudo apt-get install rose’?

• Any programming environment effort:
– Must have product plan, from desktop up, e.g., OpenMP.
– Or must extend an existing product, e.g., TBB.

• We use commodity chips because only a few orgs have
the billions of dollars to design and fab.

• We use commodity programming environments for the
same reason.

Summary

•  Building the next generation of parallel applications requires enabling
domain scientists:

–  To write sophisticated computational expressions.
–  Do so with serial fragments.
–  Where fragments hoisted into scalable, resilient fragment.

•  A pattern-based approach offers:
–  Parallel thinking, sequential programming.
–  A migration strategy similar to SPMD migration of early 90’s.

•  Massively threaded programming is attractive:
–  Is there a sufficient market to drive it?

•  Progress in programming environment requires:
–  Addressing technical requirements, yes, but
–  Product planning has to be just as important.

Extra Slides

If FLOPS are free,
why are we making them cheaper?

26

Larry Wall:
Easy things should be easy, hard

things should be possible.

Why are we making easy things
easier and hard things impossible?

27

Emerging Architecture Programming
Challenges

Factoring 1K to1B-Way Parallelism

• Why 1K to 1B?
– Clock rate: O(1GHz) → O(109) ops/sec sequential
– Terascale: 1012 ops/sec → O(103) simultaneous ops

•  1K parallel intra-node.
– Petascale: 1015 ops/sec → O(106) simultaneous ops

•  1K-10K parallel intra-node.
•  100-1K parallel inter-node.

– Exascale: 1018 ops/sec → O(109) simultaneous ops
•  1K-10K parallel intra-node.
•  100K-1M parallel inter-node.

• Current nodes:
– SPARC64™ VIIIfx: 128GF (at 2.2GHz). “K” machine
– NVIDIA Fermi: 500GF (at 1.1GHz). Tianhe-1A.

Stein’s Law: If a trend cannot continue, it will stop.	

Herbert Stein, chairman of the Council of Economic Advisers under Nixon and Ford.	

Data Movement: Locality

• Locality always important:
– Caches: CPU
– L1$ vs L2$ vs DRAM: Order of magnitude latency.

• Newer concern:
– NUMA affinity.
–  Initial data placement important (unless FLOP rich).
– Example:

•  4-socket AMD with dual six-core per socket (48 cores).
• BW of owner-compute: 120 GB/s.
• BW of neighbor-compute: 30 GB/s.

• GPUs: Not so much a concern.

Memory Size

• Current “healthy” memory/core:
– 512 MB/core (e.g. MD computations).
– 2 GB/core (e.g. Implicit CFD).

• Future:
– 512 MB/core “luxurious”.

Resilience

• Individual component reliability:
– Tuned for “acceptable” failure rate.

• Aggregate reliability:
– Function of all components not failing.
– May decline.

• Size of data sets may limit usage of standard
checkpoint/restart.

Summary of Algorithms Challenge

•  Realize node parallelism of O(1K-10K).
• Do so

– Within a more complicated memory system and
– With reduced relative memory capacity and
– With decreasing reliability.

New Trends and Responses

•  Increasing data parallelism:
– Design for vectorization and increasing vector lengths.
–  SIMT a bit more general, but fits under here.

•  Increasing core count:
–  Expose task level parallelism.
–  Expresss task using DAG or similar constructs.

• Reduced memory size:
–  Express algorithms as multi-precision.
– Compute data vs. store

• Memory architecture complexity:
–  Localize allocation/initialization.
–  Favor algorithms with higher compute/communication ratio.

• Resilience: Distinguish what must be reliably computed.

Designing for Trends

• Long-term success must include design for change.
• Algorithms we develop today must adapt to future
changes.

• Lesson from Distributed Memory (SPMD):
– What was the trend? Increasing processor count.
– Domain decomposition algs matched trend.

• Design algorithm for p domains.
• Design software for expanded modeling within a domain.

Placement and Migration

36

Placement and Migration

• MPI:
– Data/work placement clear.
– Migration explicit.

• Threading:
–  It’s a mess (IMHO).
– Some platforms good.
– Many not.
– Default is bad (but getting better).
– Some issues are intrinsic.

Data Placement on NUMA

• Memory Intensive computations: Page placement has
huge impact.

• Most systems: First touch (except LWKs).
• Application data objects:

– Phase 1: Construction phase, e.g., finite element
assembly.

– Phase 2: Use phase, e.g., linear solve.
• Problem: First touch difficult to control in phase 1.
• Idea: Page migration.

– Not new: SGI Origin. Many old papers on topic.

38

Data placement experiments

• MiniApp: HPCCG (Mantevo Project)
• Construct sparse linear system, solve with CG.
• Two modes:

– Data placed by assembly, not migrated for NUMA
– Data migrated using parallel access pattern of CG.

• Results on dual socket quad-core Nehalem system.

39

Weak Scaling Problem

  MPI and conditioned data approach comparable.
  Non-conditioned very poor scaling.

40

Page Placement summary

• MPI+OpenMP (or any threading approach) is best
overall.

• But:
– Data placement is big issue.
– Hard to control.
–  Insufficient runtime support.

• Current work:
– Migrate on next-touch (MONT).
– Considered in OpenMP (next version).
– Also being studied in Kitten (Kevin Pedretti).

• Note: This phenomenon especially damaging to
OpenMP common usage.

41

