
Exascale: Can My Code Get From Here To There?

Information Sciences Institute

22 June 2010
Bob Lucas
rflucas@isi.edu

Outline

My Merely Terascale Sparse Solver
Today’s Execution Model (i.e., Here)
Exascale Expectations (i.e., There)

Gaussian Elimination
Toy Problem

1

2

3

7

8

9

4

5

6

1 X X X
3 XX X
2 XXX *X*
7 X XX
9 XX X
8 XXX*X*
4 X *X *XX*
5 X XXXX
6 X* X**XX

do 4 k = 1, 9
do 1 i = k + 1, 9
a(i, k) = a(i,k) / a(k,k)

1 continue
do 3 j = k + 1, 9
do 2 i = k + 1, 9

a(i,j) = a(i,j) –
1 a(i,k) *
2 a(k,j)

2 continue
3 continue
4 continue

Multifrontal View of the Toy Matrix

8
4
5
6

2
4
5
6

7
4
8

9
6
8

3
2
6

1
2
4

Duff and Reid, ACM TOMS 1983

1

2

3

7

8

9

4

5

6

Notional Control Flow

do 1 sn = 1, nsn
call Assemble()
call Factor()
call Stack()

1 continue

8
4
5
6

2
4
5
6

7
4
8

9
6
8

3
2
6

1
2
4

A Real Problem : “Hood”

Automotive Hood Inner Panel
Springback using LS-DYNA

“Hood” Elimination Tree

Each frontal matrix’s triangle scaled
by operations required to factor it.

Terascale Today

Reordering is O(1%) Amdahl fraction
I’m using sequential Metis

Memory bottleneck
Allocate all memory to one processor

ParMetis and PT-Scotch
Modest parallel speedup
Lousy ordering inflates the other 99%

Could get to Petascale given new reordering
1994 MasPar version

Today’s Execution Model

Based on half a century of stability
Von Neuman CPUs => Fortran, C, C++, etc.

Evolutionary extensions
Distributed memory => MPI Library
SIMD extensions => SSE Directives
Multicore nodes => OpenMP Directives
Accelerators => CUDA, OpenCL

All of the above require user intervention
Nothing comes for free anymore

Distributed Memory

User has to explicitly manage
Data distribution
Synchronization and communication

Portability via libraries
IEEE 1516
MPI

High latency is major Amdahl problem
Most is software overhead
Anton’s point-to-point latency is 200ns

SIMD Extensions

Originally multimedia extensions (MMX)
Energy expended, per Bill Dally

Issue instruction in Pentium ~2000pJ
Issue instruction in Fermi ~200pJ
Perform floating point operation ~50pJ

Amortize instruction issue over more ops.
Requires:

Double-word data alignment (still?)
Padding of array leading dimension
Directives

Multicore Nodes

Dennard scaling has ended
Clock frequencies have plateaued

Moore’s Law continues unabated
Multiple cores per die
Coherent shared memory

Exploit with OpenMP (Pthreads, etc.)
Ideally simple and intuitive:

!$OMP PARALLEL DO
do i = 1, dma_len
front(p + i - 1) = front(p + i - 1) + ltmp(i)

end do

Multicore Nodes

Dennard scaling has ended
Clock frequencies have plateaued

Moore’s Law continues unabated
Multiple cores per die
Coherent shared memory

Exploit with OpenMP (Pthreads, etc.)
Ideally simple and intuitive:

!$OMP PARALLEL DO
do i = 1, dma_len
front(p + i - 1) = front(p + i - 1) + ltmp(i)

end do

Notional SMP Control Flow

do 3 level = leaves, root
if (sn_count(level) .gt. num_threads) then

c$omp paralleldo
do 1 sn = ptr(level), ptr(level + 1) - 1
call Seq_Assemble()
call Seq_Factor()

1 continue
else
do 2 sn = ptr(level), ptr(level + 1) - 1
call Seq_Assemble()
call SMP_Factor()

2 continue
end if
call Storage_Recovery()

3 continue

Quickly Gets Ugly

#if 1
C_DOALL_PARALLEL
C_SHARED1 (wave, jwave, iwave, l2D, ln, sp)
C_SHARED2 (tasks, msglvl, msgnum, indices, jv, iv)
C_SHARED2 (l, KObjPtr, KObjVal, alpha, pvtTweak)
C_SHARED2 (Mexists, jm, im, m, K_out)
C_SHARED2 (rs_num, RS_out, k_head, k_line, k_num)
C_SHARED2 (L_out, cleveX, small, sigma, Ltrans)
C_SHARED2 (neq, xl, tmplen, l2Darray, my_err)
C_SHARED2 (nsn, my_max, my_min, my_lnz, my_ops)
C_SHARED2 (my_clprt, my_mxd, hermtn, mom, l2D_ptr)
C_SHARED2 (pvtThrsh, rs_head, rs_line, task_map, offset)
C_SHARED2 (sqz_prec, saunders, my_rv1, my_rv2)
C_PRIVATE (iw, smp_sn, tid, s1, s2)
C_PRIVATE (s3, sp_tmp, p1, lerr, sz, dg)
C_PRIVATE (ld, lp, ip, pp, op, rs)
C_PRIVATE (pi, xtp, xl2D, alpha2)
C_PRIVATE (rip, ibp, sbp, l2p)
C_DYNAMIC
#endif

Accelerators

Long history in scientific computing
e.g., Floating Point Systems

Now exploiting devices for gaming/graphics
Enhance end-user experience
Independent of scientific computing

New architectures
Have to rethink algorithms

New programming languages
Directives for standard languages

Fortran vs CUDA

do j = jl, jr
do i = jr + 1, ld

x = 0.0
do k = jl, j - 1
x = x + s(i, k) * s(k, j)

end do
s(i, j) = s(i, j) - x

end do
end do

ip=0;
for (j = jl; j <= jr; j++) {
if(ltid <= (j-1)-jl){

gpulskj(ip+ltid) = s[IDXS(jl+ltid,j)];
}

ip = ip + (j - 1) – jl + 1;
}

__syncthreads();

for (i = jr + 1 + tid; i <= ld;
i += GPUL_THREAD_COUNT) {

for (j = jl; j <= jr; j++) {
gpuls(j-jl,ltid) = s[IDXS(i,j)];
}

ip=0;
for (j = jl; j <= jr; j++) {

x = 0.0f;
for (k = jl; k <= (j-1); k++) {

x = x + gpuls(k-jl,ltid) * gpulskj(ip);
ip = ip + 1;
}
gpuls(j-jl,ltid) -= x;

}
for (j = jl; j <= jr; j++) {

s[IDXS(i,j)] = gpuls(j-jl,ltid);
}

}

Expectations for Exascale

Seminal DARPA study
Peter M. Kogge (editor), “Exascale Computing

Study: Technology Challenegs in Achieving
Exascale Systems”, Univ. of Notre Dame, CSE
Detp. Tech. Report, TR-2008-13, Sept. 28, 2008

Principle challenges
Concurrency O(1B ALUs)
Energy Hundreds of MWs
Memory Falling off Moore’s Law
Resilience Soft error rate skyrockets

Concurrency

Rate of growth accelerating
With multithreading, it could reach billions

What’s the Amdahl fraction of that?
May need to rediscover fine-grain SIMD

Familiar synchronization will be prohibitive
Dot products in Krylov-space algorithms
Reductions for error state or time quanta

We’ll have to rethink a lot of mathematics
Somebody needs to invent a new reordering
Otherwise, I can’t get there

Energy

Data movement will dominate energy
What’s the abstraction for this?
I expect explicit machine model
Will need to overlay with virtual model

Heterogeneous processing nodes
SIMD nodes to minimize instruction issue
Low-latency nodes for Amdahl fractions
Only power up those cores you need
AMD’s Fusion is just the beginning

Power Perspective
G

ig
aF

lo
p/

s

K
ilo

W
at

ts

0.001

0.01

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

1960 1970 1980 1990 2000 2010 2020

Performance (Gflops)
Power

Memory

End of Moore’s Law for DRAM before logic
DRAM structures are 3D

Won’t have luxury of redundant data
Material properties tables
Executables

Problem since shared data can’t be local
Requires energy to move it

I expect explicit memory hierarchies
Already seen it in Cray 2, Cell, & GPUs
What’s the programming abstraction?

Memory Capacity Challenge

ExaFlop/s

ExaBytes

1,000,000 DRAM chips, circa 2014

and David Koester (MITRE)

Resilience

Check pointing won’t be adequate any more
Error rates will grow faster than I/O B/W

Memory and networks protected with ECC
What about processors and arithmetic?

Can’t afford blanket use of redundancy
Need a new programming abstraction here too

Ignore some errors (e.g., HPCS Random Access)
Correct others (e.g., Iterative Refinement)
Trade energy and/or performance for resilience.

Summary

Some people will make it to Exascale
I’m literally betting on Malcomb Stocks

I’m not sure if my solver will
First there’s the reordering problem
Then load imbalance & critical path length
Then “whack a mole” with other bottlenecks

I believe the programming model needs to evolve
Don’t unnecessarily throw away working code
Performance programmers manage everything
I don’t expect that to change

	Slide Number 1
	Outline
	Gaussian Elimination�Toy Problem
	Multifrontal View of the Toy Matrix
	Notional Control Flow
	A Real Problem : “Hood”
	“Hood” Elimination Tree
	Terascale Today
	Today’s Execution Model
	Distributed Memory
	SIMD Extensions
	Multicore Nodes
	Multicore Nodes
	Notional SMP Control Flow
	Quickly Gets Ugly
	Accelerators
	Fortran vs CUDA
	Expectations for Exascale
	Concurrency
	Energy
	Power Perspective
	Memory
	Memory Capacity Challenge
	Resilience
	Summary

