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History: ASC exascale planning efforts 

•  NNSA formed five working groups in June 2010 
–  Architectures, System SW, Programming Models & Tools, Viz/Data, I/O 
–  Planning meeting in Washington DC 
–  Exercised showed that tools and PM needed to be separate groups 

•  Subsequent planning meeting in September 2010 in Albuquerque 
–  Added working groups for application side 
–  Later refined to: applications & Solvers/Libraries, total of eight WGs 
–  Outbriefs on challenges and gaps 

•  Working group leads represented NNSA in March 2011 ASCR meeting 

•  ASC exascale meeting in San Francisco, March 2011 
–  Added members from ASCR labs and academia chosen by ASCR 
–  Joint working group discussions on cross-cutting issues 
–  Started with September outbriefs 
–  Outbriefs for each working group with ASCR input 

Recommendations for next steps/PathForward investments 
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Scope of the Tools WG 

•  Major Software Stack Elements the Group is Responsible for: 
–  Tools for application development (debugging, correctness, performance) 

•  Wide spectrum: memory, power, locality, resilience, … 
•  Static analysis tools for code evaluation 

–  Tools for SSW to evaluate the exascale stack itself 
•  SSW, I/O, Network, File systems, Scheduler, … 
•  Need to get away from ad-hoc tools, need whole system solution 

–  Shared infrastructure for measurement, data gathering and presentation 
•  Online analysis, data aggregation, shared across the system stack 
•  Post-mortem, online, in site and batch tools 

–  HW and SW APIs / information exchange with other WGs 
•  APIs that we want to wrap and monitor 
•  Introspection APIs (HW and SW) 
•  Guidance for other system components (targeted, information isolation) 
•  APIs exposing semantic information from the users to tools 

–  Resources for testing/validation of the system (incl. tools) 

•  Not in scope: compilers (vendors!), resiliency techniques, runtimes 
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State of the Art (Sep. 2010) 

•  Some successful tools all the way to Petascale class machines 
–  Many successes with brute force scaling 
–  Still evolving and often brittle 
–  Mostly focused on single paradigm codes 

•  BUT: traditional paradigms are starting to break down 
–  Applications are turning towards hybrid models 
–  Traditional debuggers don’t scale 
–  Performance analysis has to deal with flood of data 
–  Full tracing at Petascale is not feasible anymore 
–  Fragmented runtime systems and environments 

•  New approaches most include the following principles 
–  Data reduction and on-line analysis 
–  Flexible infrastructures for prototype tools 
–  Integration and sharing across topic areas and WGs 
–  Integrated runtimes avoiding stove pipes 
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Exascale Challenges for/around Tools 

•  Challenges in providing new capabilities 
–  Scalability of measurement, analysis, and presentation 

•  Incl. new metrics: memory, power, … 
–  Turning information into insight 

•  Despite flood and complexity of data from billions of threads 
–  Dealing with new programming methodologies 

•  Heterogeneous systems/architectures (HW and SW) 
•  Coupled systems and applications 

–  “What if” tools for Co-Design 

•  Challenges for tool implementations 
–  Quick design of prototype tools for new scenarios 

•  Agile development to keep up with PMs 
•  Need them early, enable specialized tools in this and other areas 

–  Getting right interfaces with the right abstractions 
•  To SSW, HWA, Apps, Libraries, Runtimes, Compilers, … 

–  Resiliency for tools and tool infrastructures 
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Technical Goals to Provide Efficient Tools 

Gaps that other groups look for the Tools WG to fill: 

•  Understand and evaluate node level resources 
–  Memory and threading 
–  Global understanding of node local data 
–  Scalable analysis algorithm (on-line/in-situ) 

•  Support new high-level abstractions in new PM approaches 
–  Understand the performance impact of their abstractions 
–  Match performance <-> PM abstractions 
–  Code refactoring/translation support 

•  Ability to correlate HW, SW, System, App Events/Data 
–  Understand/distinguish impact of system events 
–  Errors/faults incl. silent errors 
–  Map it to common domains 

•  Root cause analysis for performance and correctness 
–  Construct and understand dependency chains 
–  Track data flowing through the system 
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Technical Gaps for Building Tools 

Gaps that need to be filled to provide the requested tools: 

•  Access to the necessary data from across the system 
–  Standardized interfaces to HWA & SSW & PMs 
–  New hardware features to get more data on memory 
–  Low overhead is essential 

•  Scalable data collection and processing 
–  Online and/or in-situ analysis 
–  Requirements for scripting languages (?) 

•  Management and allocation of extra resources 
–  Application launching 
–  Launching and controlling tool/support daemons 
–  Hide system differences 

•  Common service daemon architecture that is shared and reused 
–  Tool component frameworks 
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Apps/SAL 

Tool Needs: Modular Infrastructure 

•  Common infrastructure across WGs 
–  Distributed/Cross-node architecture 
–  Gather/Aggregate data 
–  Online/In-situ analysis 
–  Wiring up infrastructure 
–  Easy to deploy and maintain 
–  Easily reusable modules 

•  Use cases for tools (+related issues) 
–  Performance information 
–  Process/Debugging state 
–  Status/Health monitoring 
–  Dynamic resource management 
–  Fault detection and mitigation 
–  Online steering 

I/O
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Key Dependencies with Other 7 WGs (1) 

–  HWA 
•  Measures of resource consumption: power, network, memory bandwidth, issue slots, … 
•  Raw measures of inefficiency (exposed latency, lack of memory parallelism) 
•  Identification of resources (e.g., for heterogeneous nodes, GPU versions) 
•  Hardware instrumentation to emulate 2018 machine costs with 2015 machine 

–  SSW 
•  Right APIs incl. RAS and debugger interfaces (incl. testing) 
•  Expose all hardware features, don’t hide anything 

incl. counters, power, resiliency, faults, HW topology 
•  Timely reporting and precise attribution of asynchronous events 
•  Interfaces to scheduler, scheduling of tool resources 
•  SSW runtime monitoring, runtime must expose right abstractions 

–  I/O & I/O Networks 
•  For tools: interfaces to capture and measure performance (MPI_T like) 
•  Capture network and storage topologies 
•  Tool needs: load balancing and striping, detect link contention 
•  modeling vs. measurement to find bottlenecks 
•  Tracing data movements and separate between system and user traffic 
•  Provide building blocks to enable specialized I/O tools (generic tracers/profilers) 
•  More discussion needed: storage approaches and formats for tools (SQL DBs?) 



10 

Defense Programs 

Key Dependencies with Other 7 WGs (2) 

–  Visualization and Data Analysis (VDA) 
•  Common needs, requirements on SSW (online analysis and data storage) 
•  Exploit application knowledge available in Viz tools (data layout, …) 
•  Provide building blocks to enable specialized VDA tools (e.g., in situ analysis) 
•  Need VDA techniques for performance data analytics and visualization 

(outlier detection, equivalence groups, compression/data reduction, feature detection, …) 
–  Programming Models (PMs) 

•  Compiler and runtime must provide information for tools to map costs back to PM abstractions 
•  Translators/PMs/Compilers must expose abstractions to tools 
•  PM runtime monitoring, runtimes must expose right abstractions 

–  Applications, Solvers, Algorithms, Libraries (Apps, SAL) 
•  We are treating libraries as apps (exception: potential API interception) 
•  List of expectations on tools – information that Apps/SAL people want to see 

–  Data centric profiling – away from flop centric tools to memory centric tools 
–  Memory locality and consumption 
–  Data structures and access patterns 
–  Opportunity analysis (concurrency, offload to accelerators, compiler feedback) 
–  Delivering information on power and resiliency 

•  Mini-Apps for testing of tools (for performance, complexity, SSW, …) 
•  Application internal monitoring interfaces to capture semantic and performance data 
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Suggested PathForward Projects 

•  Memory Tools 
–  New generation of tools to explore memory related metrics 

•  Tool Building Blocks / Infrastructure 
–  Modular and Separable Tool Components 

•  Application-Tool Interfaces 
–  Interfaces to exchange performance and semantic information 

•  Mini/Skeleton Applications 
–  Aid in the definition of the collection of Mini-Apps 

•  Power Tools 
–  Inclusion of power metrics into application oriented tools 

•  Correctness Tools 
–  Verification of correct usage of PM abstractions 

•  Support for New Models 
–  Investigation of support for new programming models 
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Big Picture Issues 

•  Coordination – must be a continuous, agile process 
–  Among tool developers 

•  Coordinate on common interfaces and components 
•  Maintenance models 

–  With Apps/SAL teams 
•  Ensure their needs are met 
•  Establish interfaces 

–  With SSW, I/O, VDA 
•  Share infrastructures 
•  Avoid ad-hoc tools 

–  With vendors 
•  Need interfaces and documentation 
•  Co-Design interactions on getting the right system hooks 

•  Test beds 
–  Essential, need sufficient access for tools research 
–  Work around security concerns (e.g., for power sensors) 


