
1

Defense Programs

ASC Working Group on Exascale Tools

Activities in the ASC WG on Tools

Martin Schulz, LLNL (lead)

Atinuke Arowojolu, DOE
Sean Blanchard, LANL
James Brandt, SNLs
Scott Futral, LLNL
John Mellor-Crummey, Rice University
Barton Miller, University of Wisconsin
David Montoya, LANL
Mahesh Rajan, SNLs
Kenneth Roche, PNNL
Allan Snavely, UCSD/SDSC
Mary Zosel, LLNL

2

Defense Programs

History: ASC exascale planning efforts

•  NNSA formed five working groups in June 2010
–  Architectures, System SW, Programming Models & Tools, Viz/Data, I/O
–  Planning meeting in Washington DC
–  Exercised showed that tools and PM needed to be separate groups

•  Subsequent planning meeting in September 2010 in Albuquerque
–  Added working groups for application side
–  Later refined to: applications & Solvers/Libraries, total of eight WGs
–  Outbriefs on challenges and gaps

•  Working group leads represented NNSA in March 2011 ASCR meeting

•  ASC exascale meeting in San Francisco, March 2011
–  Added members from ASCR labs and academia chosen by ASCR
–  Joint working group discussions on cross-cutting issues
–  Started with September outbriefs
–  Outbriefs for each working group with ASCR input

Recommendations for next steps/PathForward investments

3

Defense Programs

Scope of the Tools WG

•  Major Software Stack Elements the Group is Responsible for:
–  Tools for application development (debugging, correctness, performance)

•  Wide spectrum: memory, power, locality, resilience, …
•  Static analysis tools for code evaluation

–  Tools for SSW to evaluate the exascale stack itself
•  SSW, I/O, Network, File systems, Scheduler, …
•  Need to get away from ad-hoc tools, need whole system solution

–  Shared infrastructure for measurement, data gathering and presentation
•  Online analysis, data aggregation, shared across the system stack
•  Post-mortem, online, in site and batch tools

–  HW and SW APIs / information exchange with other WGs
•  APIs that we want to wrap and monitor
•  Introspection APIs (HW and SW)
•  Guidance for other system components (targeted, information isolation)
•  APIs exposing semantic information from the users to tools

–  Resources for testing/validation of the system (incl. tools)

•  Not in scope: compilers (vendors!), resiliency techniques, runtimes

4

Defense Programs

State of the Art (Sep. 2010)

•  Some successful tools all the way to Petascale class machines
–  Many successes with brute force scaling
–  Still evolving and often brittle
–  Mostly focused on single paradigm codes

•  BUT: traditional paradigms are starting to break down
–  Applications are turning towards hybrid models
–  Traditional debuggers don’t scale
–  Performance analysis has to deal with flood of data
–  Full tracing at Petascale is not feasible anymore
–  Fragmented runtime systems and environments

•  New approaches most include the following principles
–  Data reduction and on-line analysis
–  Flexible infrastructures for prototype tools
–  Integration and sharing across topic areas and WGs
–  Integrated runtimes avoiding stove pipes

5

Defense Programs

Exascale Challenges for/around Tools

•  Challenges in providing new capabilities
–  Scalability of measurement, analysis, and presentation

•  Incl. new metrics: memory, power, …
–  Turning information into insight

•  Despite flood and complexity of data from billions of threads
–  Dealing with new programming methodologies

•  Heterogeneous systems/architectures (HW and SW)
•  Coupled systems and applications

–  “What if” tools for Co-Design

•  Challenges for tool implementations
–  Quick design of prototype tools for new scenarios

•  Agile development to keep up with PMs
•  Need them early, enable specialized tools in this and other areas

–  Getting right interfaces with the right abstractions
•  To SSW, HWA, Apps, Libraries, Runtimes, Compilers, …

–  Resiliency for tools and tool infrastructures

6

Defense Programs

Technical Goals to Provide Efficient Tools

Gaps that other groups look for the Tools WG to fill:

•  Understand and evaluate node level resources
–  Memory and threading
–  Global understanding of node local data
–  Scalable analysis algorithm (on-line/in-situ)

•  Support new high-level abstractions in new PM approaches
–  Understand the performance impact of their abstractions
–  Match performance <-> PM abstractions
–  Code refactoring/translation support

•  Ability to correlate HW, SW, System, App Events/Data
–  Understand/distinguish impact of system events
–  Errors/faults incl. silent errors
–  Map it to common domains

•  Root cause analysis for performance and correctness
–  Construct and understand dependency chains
–  Track data flowing through the system

7

Defense Programs

Technical Gaps for Building Tools

Gaps that need to be filled to provide the requested tools:

•  Access to the necessary data from across the system
–  Standardized interfaces to HWA & SSW & PMs
–  New hardware features to get more data on memory
–  Low overhead is essential

•  Scalable data collection and processing
–  Online and/or in-situ analysis
–  Requirements for scripting languages (?)

•  Management and allocation of extra resources
–  Application launching
–  Launching and controlling tool/support daemons
–  Hide system differences

•  Common service daemon architecture that is shared and reused
–  Tool component frameworks

8

Defense Programs

Apps/SAL

Tool Needs: Modular Infrastructure

•  Common infrastructure across WGs
–  Distributed/Cross-node architecture
–  Gather/Aggregate data
–  Online/In-situ analysis
–  Wiring up infrastructure
–  Easy to deploy and maintain
–  Easily reusable modules

•  Use cases for tools (+related issues)
–  Performance information
–  Process/Debugging state
–  Status/Health monitoring
–  Dynamic resource management
–  Fault detection and mitigation
–  Online steering

I/O

V
D

A

To
ol

s

P
M

Modular Infrastructure

SSW (per node)

Arch

9

Defense Programs

Key Dependencies with Other 7 WGs (1)

–  HWA
•  Measures of resource consumption: power, network, memory bandwidth, issue slots, …
•  Raw measures of inefficiency (exposed latency, lack of memory parallelism)
•  Identification of resources (e.g., for heterogeneous nodes, GPU versions)
•  Hardware instrumentation to emulate 2018 machine costs with 2015 machine

–  SSW
•  Right APIs incl. RAS and debugger interfaces (incl. testing)
•  Expose all hardware features, don’t hide anything

incl. counters, power, resiliency, faults, HW topology
•  Timely reporting and precise attribution of asynchronous events
•  Interfaces to scheduler, scheduling of tool resources
•  SSW runtime monitoring, runtime must expose right abstractions

–  I/O & I/O Networks
•  For tools: interfaces to capture and measure performance (MPI_T like)
•  Capture network and storage topologies
•  Tool needs: load balancing and striping, detect link contention
•  modeling vs. measurement to find bottlenecks
•  Tracing data movements and separate between system and user traffic
•  Provide building blocks to enable specialized I/O tools (generic tracers/profilers)
•  More discussion needed: storage approaches and formats for tools (SQL DBs?)

10

Defense Programs

Key Dependencies with Other 7 WGs (2)

–  Visualization and Data Analysis (VDA)
•  Common needs, requirements on SSW (online analysis and data storage)
•  Exploit application knowledge available in Viz tools (data layout, …)
•  Provide building blocks to enable specialized VDA tools (e.g., in situ analysis)
•  Need VDA techniques for performance data analytics and visualization

(outlier detection, equivalence groups, compression/data reduction, feature detection, …)
–  Programming Models (PMs)

•  Compiler and runtime must provide information for tools to map costs back to PM abstractions
•  Translators/PMs/Compilers must expose abstractions to tools
•  PM runtime monitoring, runtimes must expose right abstractions

–  Applications, Solvers, Algorithms, Libraries (Apps, SAL)
•  We are treating libraries as apps (exception: potential API interception)
•  List of expectations on tools – information that Apps/SAL people want to see

–  Data centric profiling – away from flop centric tools to memory centric tools
–  Memory locality and consumption
–  Data structures and access patterns
–  Opportunity analysis (concurrency, offload to accelerators, compiler feedback)
–  Delivering information on power and resiliency

•  Mini-Apps for testing of tools (for performance, complexity, SSW, …)
•  Application internal monitoring interfaces to capture semantic and performance data

11

Defense Programs

Suggested PathForward Projects

•  Memory Tools
–  New generation of tools to explore memory related metrics

•  Tool Building Blocks / Infrastructure
–  Modular and Separable Tool Components

•  Application-Tool Interfaces
–  Interfaces to exchange performance and semantic information

•  Mini/Skeleton Applications
–  Aid in the definition of the collection of Mini-Apps

•  Power Tools
–  Inclusion of power metrics into application oriented tools

•  Correctness Tools
–  Verification of correct usage of PM abstractions

•  Support for New Models
–  Investigation of support for new programming models

12

Defense Programs
Big Picture Issues

•  Coordination – must be a continuous, agile process
–  Among tool developers

•  Coordinate on common interfaces and components
•  Maintenance models

–  With Apps/SAL teams
•  Ensure their needs are met
•  Establish interfaces

–  With SSW, I/O, VDA
•  Share infrastructures
•  Avoid ad-hoc tools

–  With vendors
•  Need interfaces and documentation
•  Co-Design interactions on getting the right system hooks

•  Test beds
–  Essential, need sufficient access for tools research
–  Work around security concerns (e.g., for power sensors)

