
EXASCALE SOFTWARE CENTER★

TOOLS PERSPECTIVE
John Mellor-Crummey

Tools Planning Team:
 Jeffrey S. Vetter (ORNL) Allen Malony (UO)
 Bronis R. de Supinski (LLNL) Sameer Shende (UO)
 Nathan Tallent (Rice → PNNL) ★RIP

Exascale Tools Scope

 Performance
■ Empirical
■ observation using both instrumentation and sampling
■ offline analysis including problem diagnosis and multi-experiment analysis
■ introspection for autotuning: support for optimization guided by online analysis

■ Analytical modeling
 Correctness and debugging
■ Online
■ execution control: stop, go, conditional breakpoints, data watchpoints
■ state introspection: registers, memory, language & communication runtimes
■ analysis: semantic, relative, behavioral equivalence classes, statistical

■ Formal methods: static analysis, model checking
 Presentation and insight
■ Render correctness and performance results in a scalable, actionable form

 Tools infrastructure and middleware

Exascale Landscape: Hostile for Tools

■ Extreme, multi-level,
heterogeneous parallelism
■ Process, thread, instruction,

vector, accelerator

■ Dynamic execution environment
■ Dynamic threading
■ Adaptive HW and SW systems
■ Hardware failure

■ Massive asynchrony
■ Computation, communication, I/O

Application Evolution
■ New programming models
■ Growing application

complexity
■ Multi-faceted applications
■ Simulations coupled with in-

situ data analysis

Tools face the same issues as applications AND must
consider application evolution as well

Exascale Tool Challenges – I

 Exascale tools: event-based reactive systems of immense scale
■ Must interact with all HW and SW components
■ often at an extremely detailed level

■ Dubbing this an “engineering challenge” is an understatement
 Observation of exascale execution dynamics and system state
■ Tools require access to not only application state but runtime as well
■ requires co-design with programming models, runtime systems, and OS

■ On-the-fly, problem-focused measurement, analysis, and data reduction
■ As always, tradeoff between precision and accuracy

 Fault tolerance
■ Tools must be aware of application checkpoints, faults, and recovery
■ Tools themselves must tolerate faults

Exascale Tool Challenges – II

 Data management
■ Different data organizations are appropriate for measurement, analysis

and presentation
■ thread-centric, resource-centric, time-centric, code-centric, data-centric, …

■ Large data volumes will require careful design of persistent
representations, e.g. dense vs. sparse; consider access patterns

■ All analysis, data transformations, and I/O must be parallel
 Analysis and modeling
■ Cope with the complexity, dynamism, and heterogeneity of exascale

executions
■ Data deluge requires automation of problem identification and diagnosis

 Presentation
■ User interfaces must direct attention, not just provide access to information
■ Automatically scale and focus presentation to render phenomena

(automatically determined) of interest

Key Tool Design Questions - I

 What hardware mechanisms are needed to support effective tools?
■ Support for measurement, attribution, and diagnosis of problems
■ both for correctness and performance

 What language and compiler support is necessary to provide
information required by tools?

 What runtime and OS mechanisms and interfaces are necessary to
support inquiry and control by tools?

 How will tools efficiently and effectively monitor massively parallel
programs executing on heterogeneous hardware with multi-scale,
hierarchical parallelism in which faults may occur?

 What measurements and analyses are necessary to diagnose root
causes of performance bottlenecks and to recommend solutions?
■ Load imbalance, serialization, resource contention, exposed latency, ...?

 How will tools interact with dynamic and fault-tolerant run times?

Key Tool Design Questions - II

 How will tools analyze and mine GB/TB of data and attribute
information to source code in a meaningful way?

 What new tool paradigms can overcome lack of insight from
existing tools?
■ Today: data summary
■ Need: automated problem discovery, diagnosis, and recommendations

Evolution of Current Capabilities?

 Performance
■ Sampling-based methods for measurement and analysis can scale
■ Instrumentation for capturing semantic information is necessary
■ Code-centric, data-centric, time-centric presentation paradigms useful
■ Promising recent developments
■ emerging integration with parallel programming environments
■ emerging measurement infrastructure for accelerator cores

 Debugging / Correctness
■ Vendor tools are marginally usable at current system scales
■ Correctness tools for identifying runtime communication errors do not scale
■ Model-checking and other formal methods limited in scalability,

robustness for mainstream languages and range of programming models
 Tool infrastructure
■ Scalable middleware demonstrated and under continued development
■ Increasing HW support for performance monitoring, watchpoints, ...

New Capabilities Needed

 On-line: measurement, monitoring, control, data reduction
■ Scalable problem-focused measurement to support effective diagnosis
■ resource consumption, inefficiency, power consumption

■ Techniques for extreme parallelism, dynamic threading, and heterogeneity
■ APIs to support introspection & lightweight analysis for adaptation
■ performance, fault-tolerance

■ Programmable thread-based agents for correctness introspection
■ Framework for survivable tools

 Analysis
■ Diagnosing bottlenecks with massive dynamic threading
■ Integration of semantic correctness checking in new programming models
■ Data mining for diagnosis of performance/correctness

 Modeling and prediction for diagnosis
 Scalable presentation
■ Visualize application data, system state, activity & their evolution over time

 Paradigms that drastically reduce the optimization and debugging effort

Essential Component Technologies

 HW, OS support for measurement, especially sampling
 Programmable thread-based agents for scalable online analysis of

data and execution state
 Automatic identification of interesting phenomena within data
 Tool infrastructure API for applications to control, inform, & inquire
 Stateless protocols for fault-tolerant interactions between tool

components
 Idioms for scalable presentation
 Binary analysis to support modeling and instrumentation
 Binary and wrapper instrumentation (measurement, correctness,

control)
 Stack unwinding for attributing costs
 Tool middleware and use of system/library support (e.g., Parallel I/O)

Hardware Co-Design Opportunities

Insight from tools will be limited without HW support
 Need HW measurement interfaces to monitor & attribute
■ Communication, computation, power, data movement, latency, I/O, …

 HW should support both calipers and sampling
 Need efficient access to application state
■ Program counters, thread stacks, …
■ Data state: memory watchpoints, association of memory events with

program counters, etc.
 Design of new HW technologies must consider tool support

required to understand correctness and efficiency
 HW tool assists to improve tool efficiency?

A Few Words About GPUs
 NVIDIA Profiling Roadmap (what they are thinking about)
 Measurement
■ Finer granularity profiling: node → kernel → instruction (pipeline, memory subsystem)
■ Existing hardware limitations are not fundamental, e.g. the following are possible:
■ PC and event-based sampling
■ increased type, size, and number of hardware counters
■ tracing (though time and space overhead can be high)

■ Power, power state profiling
■ Increased profiling scope
■ remote profiling, e.g. node in a cluster
■ multi-process profiling

 Attribution of performance problems and opportunities at source level
 Analysis
■ Automatic identification of common, actionable performance problems
■ e.g. loads with poor memory subsystem behavior

■ Tools to identify algorithms, functions, loops, etc. that are good candidates for GPU
acceleration

 Profiling ecosystem enablement
David Goodwin, NVIDIA Tools Group

Software Co-Design Opportunities

 Exascale tool development must interact with programming
models, compilers, runtime/system software
■ Exascale machine models will be basis for tool design, validation,

and use
■ Identify necessary runtime and OS support for enabling tools
■ Need tool capabilities to meet needs at all levels of software stack
■ Identify points of tool interaction for providing feedback and

controlling tuning knobs
 Exascale software advances could be leveraged in tool

development
■ e.g., data management, visualization

OS and Runtime Co-Design

Usable tools require OS and runtime systems to provide:

 Interfaces for intercepting and modifying operations on key
abstractions
■ Threads, processes, locks, memory allocation, files, communication channels
■ Ability to run tool processes/threads of control
■ Exporting of hardware-measurement interfaces
■ Scalable access to executables and shared objects for online analysis
■ Accurate and complete unwind and line map information
■ Program timer and PMU threshold-based interrupts in repeat mode

 Support for thread-specific asynchronous signals
 Summarization of (thread-specific) signals during system calls vs.

system-wide sampling
 Interface for mapping machine-level to application-level state
■ e.g., recovering application call paths in the context of work stealing

Closing Thoughts

 Exascale tools challenges reflect full range of complexity found in
exascale software/hardware

 A prescription for tools development
■ Interact with all exascale software groups
■ establishes requirements and decision metrics
■ co-design with programming models, OS/runtime, I/O, Viz

■ Identify and select critical technology
■ select tool capabilities to enhance and extend
■ identify necessary new capabilities for investment

■ Research and development/engineering effort focus
■ refining and scaling appropriate existing technologies
■ developing new technologies to address new exascale concerns

Strawman Plan

2

Performance Tools Strawman Plan - E

 Performance data sources
■ Hardware counters for monitoring and attributing time, power, processor

core/uncore activity/idleness, network traffic, data movement,
synchronization

 Performance measurement underpinnings
■ Kernel interfaces for programming & accessing HW counters

■ Kernel support for delivering and handling signals for asynchronous events
■ Instrumentation hooks for key interfaces in libraries, OS in full software

stack
■ e.g. MPIT, one-sided communication, synchronization, I/O, ...

■ Compiler-based instrumentation (e.g. function entry/exit)
■ Binary instrumentation

■ Link-time and/or launch-time library wrapping tools
■ e.g. hpclink, Launchmon, P^nMPI, hpcrun

■ Source instrumentation?

3

Performance Tools Strawman Plan - E

 Performance measurement software
■ High-level interface for programming performance counters
■ e.g., PAPI, CUPTI

■ Introspection API to be used by tools and autotuners
■ e.g., PAPI

■ Attribute metrics to calling context based on synchronous and
asynchronous events using call stack unwinding
■ Components: accurate & complete compiler line maps (vendor buy-in)
■ Run-time library support for unwinding continuations

■ Instrumentation for (problem-focused) measurement and (sometimes)
online analysis, and (sometimes) attribution for key library interfaces
such as communication, I/O, synchronization etc.

■ Profiling infrastructure

4

Performance Tools Strawman Plan - E

 Data management
■ Logging measurement data to files using parallel I/O
■ e.g., SIONLIB, MPI/IO, custom data formats

■ Scalable multi-experiment parallel profile database, e.g. TAU
 Analysis
■ Parallel data analysis
■ Online-analysis to support introspection, e.g. performance assertions

■ Pinpointing scalability bottlenecks; differential profiling, e.g. HPCToolkit
■ Identifying rate-limiting resources for code regions, e.g. Roofline

■ Binary analysis for attribution
■ Data-centric diagnosis, e.g. HPCToolkit

■ Parallel data mining, regression analysis
■ Heterogeneous performance analysis

 Presentation
■ Code-centric, data centric, and time-centric performance metrics

6

Performance Tools Strawman Plan - R

 Performance data sources
■ HW counter support for sampling accelerator performance

 Performance measurement software
■ Measurement approaches for workflows, e.g. coupled codes
■ Support for tool fault tolerance

■ Integrated performance monitoring with feedback support
 Analysis
■ Data mining for automatic bottleneck detection and diagnosis
■ scalable diagnosis of temporal workflow bottlenecks: provisioning, critical path
■ diagnosing node throughput bottlenecks
■ assessing application fault tolerance

■ Analytical and empirical modeling
 Presentation
■ Automatically identify, autoscale & present relevant data

■ Multidimensional or temporal data

7

Correctness Tools Strawman Plan - E

 Correctness data sources
■ Hardware for breakpoints, watchpoints

 Correctness monitoring & control underpinnings
■ Kernel interfaces process control, e.g. ptrace, Topaz teledebugging

 Correctness measurement software
■ Binary instrumentation for monitoring accesses & computation
■ e.g. valgrind, Dyninst

■ Instrumentation library for checking communication, e.g. MARMOT, MUST
 Online analysis & control
■ Data access errors, e.g. valgrind
■ Online data analysis, e.g. relative debugging
■ Online data reduction and control, e.g. MRNet, STAT
■ Scalable breakpoint debugging

 Presentation
■ Code-centric presentation of correctness metrics, e.g. HPCToolkit, STAT

8

Correctness Tools Strawman Plan - R

 Correctness measurement software
■ High performance race detection

 Online analysis & control
■ Better techniques for command, control, and feedback at scale for

debugging
 Online presentation of data
 Offline analysis
■ Statistical techniques; cooperative bug isolation
■ Static analysis for proving correctness; e.g. MPI checkers

