
High Resolution Adaptive Methods

for Complex Flows

Marsha Berger

Courant Institute

New York University

Research Program

Automate the computation of high resolution

simulations in realistic engineering applications.

• Geometry specification

• Mesh generation

• Algorithm development

• Numerical discretizations

• Adaptive techniques

• Robust software

• High performance computing

Many of these issues are being studied in the DOE-

supported CMCL (Courant Mathematics and Comput-

ing Laboratory). We have closely collaborated over the

years with researchers at LBL, LANL and LLNL.

Adaptive Mesh Refinement

Use recursively nested locally refined block structured

grids to attain given level of accuracy.

• same integrator advances solution on all grids

nice user interface

• subcycle in time

refine in time and space → constant CFL

• stable, accurate and conservative interface con-

ditions

Adaptive Mesh Refinement

• automatic error estimator

(Richardson LTE estimates)

tags regions of high error

• automatic grid generator

(clustering via edge detection algs.)

create fine grid patches in those regions

• simple data structure

Some Extensions and

Outstanding Problems

(ref: Bell et al)

• Incompressible Flows, Reacting Flows, etc.

• Error Estimation

• Implicit Schemes

• Directional Refinement

• Software and Parallelization Issues

Complex Geometry

Develop automatic methods for rapid turnaround

flow computations in complex geometries.

• CAD definition

• Surface Description

• Volume Mesh Generation

• Flow Computation

• Post-Processing

Main bottleneck is geometry acquisition

Caterpillar Diesel Engine Example
(3D) 14 Jul 1998 (3D) 14 Jul 1998

(3D) 14 Jul 1998 cutting plane through mesh(3D) 14 Jul 1998 cutting plane through mesh

Alternative Approaches

Structured Meshes

Advantages:

accurate

efficient

Disadvantages:

difficult to generate

Unstructured Meshes

Advantages:

general domains

easy to program

Disadvantages:

memory & CPU intensive

Both methods need nice surface description.

Cartesian Non-Body-Fitted Grids

Use regular Cartesian grids with solid objects cut out of

the underlying grid. Objects represented by piecewise

linear segments (2D) or surface triangulation (3D)

• Multicomponent Preprocessor – automate the

mesh generation from CAD geometry

• Mesh Generator – use adaptively refined Carte-

sian cells with embedded geometry; treat cells

that cut the body as general polyhedra

• Flow Solver – develop numerical discretizations

for cut-cells; use space filling curves for domain

partitioning and multigrid coarsening

Why Cartesian Meshes?

• finite difference schemes on regular grids can be

highly efficient, well vectorized, and have shock

capturing and convergence properties that are well

understood

• irregularity confined to lower dimensional space

do not pay efficiency penalty over entire domain

• easier grid generation: surface grid not the com-

putational grid (surface description resolves ge-

ometry; Cartesian mesh describes flow).

Why Not Cartesian Meshes?

• Cartesian grids lack the resolution of body-fitted

or unstructured grids (use AMR)

no boundary layer zoning

• irregular cells - loss of accuracy at boundary

• small cell instability

Need stable, conservative accurate schemes with CFL

based on regular cells.

Multiple Component Geometry

Motivation: Allow separately defined watertight com-

ponent triangulations as input to mesh generation.

Problem: How to compute topologically consistent sur-

faces in the presence of floating point round-off error.

Difficulty: Degeneracies make this very complicated.

Intersection Algorithm

Strategy:

• Intersect component triangulations.

• Retriangulate intersected triangles.

• Remove internal geometry.

• Resolve degeneracies with adaptive precision de-

terminant computations (Shewchuk) and virtual

perturbation tests (Mucke and Edelsbrunner.)

Intersection Algorithm

Triangle intersection boils down to multiple computa-

tions of a 4 by 4 determinant of the signed volume of a

tetrahedron T:

b

c

p

q

a 6V (Tabcp) =

∣
∣
∣
∣
∣
∣
∣

ax ay az 1
bx by bz 1
cx cy cz 1
px py pz 1

∣
∣
∣
∣
∣
∣
∣

• Compute det using floating point arithmetic.

• Floating point filter: if result > error bound, re-

compute using adaptive-precision exact arithmetic

(Shewchuk).

• If exact arithmetic gives det = 0, use tie-breaking

algorithm to resolve the degeneracy (Edelsbrun-

ner and Mucke).

Intersection Algorithm

Virtual perturbation approach using SOS technique of

Edelsbrunner and Mucke.

• Perturb (i, j)th element by εi,j = ε2
i·d−j

• Expand determinant in powers of epsilon.

• First non-zero term determines sign of the deter-

minant.

Tie-Breaking Example

Example of the perturbation for resolving de-

generacies.

Intersection Approach

Intersected triangles are retriangulated using constrained

Delaunay triangulation.

(b)

(a)

(c) (d)

Space-Filling Curves

Space-filling curves linearly order a multi-dimensional

mesh. (Pilkington & Baden, Griebel & Zumbusch, ...)

(a) Peano Hilbert ordering (b) Morton ordering

Space-Filling Curves

Use of Peano-Hilbert curve on adaptively refined meshes.

Domain Partition

• Use work estimates based on cell types to parti-

tion the mesh into load balanced domains.

(Cut cell work = 2.7 × Full cell work)

• Done on the fly into any number of partitions.

• Explicit message passing via shared memory.

• Ghost cells hold neighbors one away for each par-

tition.

SFC Mesh Coarsening

Cartesian cells cannot coarsen until all its siblings cells

are at the same level of refinement.

The SFC-ordered mesh puts siblings together, so easy

to check if cells can coarsen.

